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1. INTRODUCTION 
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Diabetes mellitus (DM) is a metabolic disease of multiple etiology whose long-term 

consequences include damage and possible failure of diverse body tissues and organs. At the root 

of this disorder is a defect in insulin secretion from the pancreas, a dysfunction in insulin’s action, 

or both. This process leads to long-standing hyperglycemia which in turn disrupts the normal 

protein, carbohydrates and fat metabolism. Although the symptoms of DM can be mild or even 

entirely absent, the chronically increased blood sugar level continues its deleterious action 

insidiously. On top of being at an increased risk for cerebrovascular, cardiovascular and 

peripheral vascular diseases, diabetic patients can develop during the course of their illness 

several complications ranging from diabetic foot to diabetic retinopathy and nephropathy (1). It is 

the latter that will constitute the main focus of this paper. 

 

 

1.1. Diabetic nephropathy 

 

1.1.1 Definition 

 

Diabetic nephropathy (DN) is defined as pathological proteinuria in the presence of type I 

or type II DM. In combination with hypertensive nephropathy they are the most common causes 

of end-stage renal disease (ESRD) in both developed and under-developed nations (2). DN is a 

common complication of type I and type II DM — in fact one of the most common chronic 

medical conditions in the world — with 20-30% of diabetic patients developing 

microalbuminuria after 15 years with the disease (2). When the albumin secretion reaches 300 mg 

per day it is called macroalbuminuria and the patients are said to have overt nephropathy. The 

pathological changes from this progression lead to renal dysfunction and chronic kidney disease 

(CKD) terminating in eventual kidney failure. 

 

 

1.1.2. Etiology 

 

1.1.2.1. Pathophysiology of DN as a glomerular disease 

 

Being charged with the initial and primordial role of filtering the blood as it arrives in the 
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renal corpuscles, the glomeruli are the first to react to the long-standing hyperglycemia. Through 

hemodynamic changes, hyperglycemia causes glomerular hyperperfusion and hyperfiltration 

which, in addition to the shear stress from the increased flow and hydrostatic pressure, leads to 

albumin leakage from glomerular capillaries (3). On top of those hemodynamic modifications, 

hyperglycemia causes glomerular injury directly through activation of protein kinase C, increased 

production of advanced glycosylation end products, and diacylglycerol synthesis (3). The 

combination of those two processes results in the upregulation of transforming growth factor-b1 

(TGF-b1) production by mesangial cells. 

 

 

1.1.2.2. Molecular basis of glomerular injury 

 

TGF-b1 acts at the glomerular level by increasing extracellular matrix (ECM) deposition 

of several proteins including collagen types I, IV, V, VI, fibronectin and laminin. This has for 

effect to induce mesangial expansion and glomerular basement membrane thickening (3). It is 

worth noting that low enzymatic degradation of ECM also plays a role in that excessive 

accumulation. 

 

Other growth factors play important roles in promoting glomerular structural changes in 

diabetic sclerosis. Sometimes they do so by upregulating TGF-b1 gene expression which is what 

platelet-derived growth factor (PDGF) does, other times they do so through an alternative 

pathway and this is what was found for connective tissue growth factor (CTGF). CTGF induces 

transient actin cytoskeleton disassembly in mesangial cells, high production of fibronectin, 

collagen types I and IV, and mesangial cell hypertrophy (3). 

 

 

1.1.2.3. Other pathological changes present in the glomerulus 

 

On top of the glomerular basement membrane thickening and the mesangial expansion, 

other glomerular alterations are present in DN like podocyte foot processes shortening, thinning 

and detachment (4). The fenestrated area of endothelial cells was also found to be reduced, the 

glycocalyx, which plays an important role in preventing glomerular protein leakage, is weakened, 
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and the communication between glomerular endothelial cells and adjacent glomerular cells is 

distorted (4). 

 

1.1.2.4. DN as a tubulointerstitial disease 

 

Although being defined mainly as a glomerular disease, DN affects much more than just 

the filtration part of the nephron. The tubules and the interstitium surrounding them also are 

subject to the pathological influence of diabetes. 

 

 

1.1.2.5. Molecular basis of tubulointerstitial injury 

 

After long exposure to increased levels of glucose, angiotensin II, pro-inflammatory 

cytokines like TGF-b1 and extracellular matrix proteins are produced by tubular cells. The 

presence of angiotensin II, on top of its obvious hemodynamic effects, leads to an increased 

expression of TGF-b1 in proximal tubular and interstitial cells (5). This consequently amplifies 

the fibrosis in the renal tubulointerstitium. 

 

On top of those direct effects, glucose and other advanced glycation end products as well 

as proteins coming through the glomerulus affect the renal tubule and more specifically its 

proximal segment. All of those factors promote TGF-b1 expression and fibrosis. 

 

It has become clear that tubulointerstitial pathology is not just the consequence of 

glomerular injury but that instead the tubules represent a primary target for several 

pathophysiological influences. DN should therefore be thought as a disorder affecting the entire 

nephron. 

 

 

1.1.2.6. Pathological changes present in the tubulointerstitium  

 

As with most glomerular diseases, in diabetic nephropathy the extent of the tubular 

interstitial injury correlates with the long term renal function. Pathological changes that are 
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associated with diabetic nephropathy include thickening of the tubular basement membrane 

(TBM), tubular atrophy, interstitial fibrosis, and arteriosclerosis (5). It has been established that 

interstitial expansion, in particular, correlates closely with the degree of renal dysfunction, 

protein loss (6, 7) and mesangial enlargement in type I (8) and type II diabetes (9). 

 

 

1.2 Epithelial-mesenchymal transition 

 

1.2.1. Definition 

 

It has been suggested that the interstitial fibroblasts that contribute to the interstitial 

expansion and fibrosis that occurs in renal disease are, in part, derived from epithelial–

mesenchymal transition (EMT) as opposed to a pool of mesenchymal cells.  EMT involves the 

transformation of epithelial cells to mesenchymal cells. It is characterized by the loss of epithelial 

cell polarity which is achieved through fading of differentiated junctions, cytoskeleton 

rearrangement and organelles redistribution (10). Loss of E-cadherin expression represents one of 

the most important hallmark of EMT (12). This change is not uniform: it can be reversed through 

a mesenchyme-to-epithelium transition (MET) as it is the case in normal renal development, it 

can be permanent as in tumors, or alternatively epithelial cells can exhibit fibroblast like qualities 

without displaying significant scattering. Under physiological conditions, EMT takes place 

during wound healing at the edge of injury. EMT also plays a very important role in the 

invasiveness potential of many metastatic cancers (12). 

 

 

1.2.2. Molecular basis of EMT 

 

The importance of the GTPase switch protein Ras that transduces signals from many 

different tyrosine kinase surface-receptor in EMT is well documented. Literature also emphasize 

that several other pathways downstream of Ras are needed for a complete EMT. Mitogen-

activated protein kinase (MAPK) as well as phosphoinositide 3-kinase (PI3K) activation are two 

important examples of the complex molecular interactions needed in the process of EMT. 
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TGFb signaling has also been shown to be an important inducer of EMT in concordance 

with the Ras pathway. Although TGF-b main function classically lies in growth arrest and 

apoptosis induction, high levels of the cytokine are found concomitantly with a significant 

increase in mutated H-Ras as well as a strong accumulation of Smad2 during the spindle 

carcinoma stage in a chemically induced skin squamous cell carcinoma (10). Smad2 is known to 

mediate the signal of TGF-b by modulating the gene expression in the nucleus through the 

formation of transcription repressor complex with other cofactors so its reactional increase to 

elevated TGF-b can be easily understood. The difficulty lies in the fact that neither Smad2 nor 

mutated H-Ras alone can lead to a full EMT. H-Ras is primordial for protection against TGF-b 

induced apoptosis and it does so through the activation of PI3K as well as by promoting 

accumulation of Smad2 in the nucleus. More research is needed to fully understand how these 

two pathways co-operate in abolishing the classical growth arrest and apoptosis signals of TGF-b 

(10). 

 

 

1.2.3. Importance of Snail in EMT 

 

The pathway of interest to us is the one involving Snail, a zinc finger transcriptional 

repressor that can control E-cadherin expression in epithelial cells. Snail is a superfamily of genes 

that has been found to control gastrulation and neural crest EMT through E-cadherin down-

regulation. (10) Snail is located in the fibroblast growth factor receptor 1 (FGFR1) pathway 

downstream of MAPK and Ras GTPase and is a target of the inflammatory cytokines TGF-b. Its 

induction though relies also on the simultaneous activation of MAPK and PI3K which inhibits 

apoptosis.  

 

It is worth noting that Snail expression can as well be stimulated by serum response factor 

(SRF). SRF is a transcription factor that can be activated by TGF-b through its initial 

upregulation of RhoA GTPase expression. In the setting of DN, SRF is activated during podocyte 

EMT stimulated by hyperglycemia (11). This leads to an up-regulation of the core EMT 

regulatory gene Snail. Similarly, blockade of SRF reduced Snail expression, protected podocytes 

from EMT and improved the proteinuria (11). 
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The inflammatory cytokine TNFa was also found to influence the levels of the 

transcription factor Snail by stabilizing it through the activation of the NF-kB pathway. 

Activation of the latter is necessary for the induction of COP9 signalosome 2 which in turn 

blocks the ubiquitination and degradation of Snail (12). 

 

 

1.2.4. EMT and Snail in the literature  

 

EMT and Snail have become the target of extensive research especially in oncology where 

it was found that a good correlation is present between the expression of E-cadherin 

transcriptional repressor and tumor evolution (10). Indeed, Snail overexpression correlates with 

tumor grade, nodal metastasis as well as tumor recurrence and predicts a poor outcome in patients 

with various cancers (12). EMT as a process has also been shown to occur in wound healing and 

in organ fibrosis (13-17). During long term diabetes kidney fibrosis and damage is preceded by 

glomerular hypertrophy, and podocyte lost and extensive proteinuria which can lead to 

glomerular sclerosis (18-20). 

 

Current literature is therefore mainly interested in Snail for its role in tumor invasiveness 

and not much can be found concerning Snail expression in the kidneys exposed to the harmful 

effects of diabetes. 
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AIM:  

The aim of the present study is to investigate the significance of Snail expression in the 

development of DN by observing the activity of Snail in 2 weeks and 2 months diabetic kidney 

samples, and then comparing them to healthy rat tissue of the same age. 

 

HYPOTHESIS: 

Snail being so inherently linked to inflammatory processes we expect Snail expression to 

increase between 2 weeks and 2 months in the diabetic kidney samples while in the control 

groups we predict no significant changes to be present. 
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3.1. Ethical background 

 

The experimental protocol was approved by The Ethics Committee of the University of 

Split, School of Medicine. All performed procedures were in accordance with the ethical 

standards of the institutional research committee and with the 1964 Helsinki declaration. 

 

 

3.2. Experimental Animals 

 

Male Sprague-Dawley rats were acquired from the University of Split, each of them 

weighing between 160 and 180 grams. The rats were raised under controlled conditions 

consisting of an environment temperature of 22±1°C and a 12-hour light/12-hour dark lighting 

schedule.  

 

 

3.3. Induction and validation of diabetes 

 

Experiments were performed using a type I diabetes rat model. Diabetes was introduced 

into the rats via an intraperitoneal injection of 55 mg/kg streptozotocin (STZ) dissolved in citrate 

buffer, at a pH of 4.5 after overnight fasting (21). Rats were given standard laboratory food, ad 

libitum, which is made up of 27% proteins, 9% fat and 64% carbohydrates (4RF21 GLP, 

Mucedola, Settimo Milanese, Italy).  

 

In order to verify diabetes within the rat models, the blood glucose and body weights of 

the rats were taken. Blood glucose level was measured in the morning at 8 am after overnight 

fasting. A One Touch Vita instrument (LifeScan, High Wycombe, UK) measured the plasma 

glucose of the rats by accessing tail vein blood, and a standard scale measured body weights. Rats 

with a glucose level above 16.5 mmol/L were considered diabetic and were used in subsequent 

experimentation. Success rate of diabetic induction was about 80%.  

 

The rats were separated into 2 groups based on the duration of diabetes as measured from 

the point of injection to the termination of the experiment (2 weeks, 2 months). Each 
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experimental group was matched with a control group consisting of non-diabetic rats raised over 

the same time period. Control group rats were given intraperitoneal injections with just citrate 

buffer. 6 animals were raised for each of the 2 control groups and the 2 experimental groups, 

totaling 24 rat models. 

 

3.4. Tissue collection and immunohistochemistry 

 

Experimental rats were anesthetized with isoflurane (Forane, Abbott Laboratories, 

Queenborough, UK). Then, 300 mL of Zamboni’s fixative at pH 4 (4% paraformaldehyde and 

15% picric acid in 0.1 M phosphate-buffered saline) was perfused. Kidney samples were 

removed and post fixed in the same fixative solution for further analysis. 

 

Kidney samples were removed and post fixed in 300 mL of Zamboni’s fixative at pH 4 

(4% paraformaldehyde and 15% picric acid in 0.1 M phosphate-buffered saline) for further 

analysis. The kidney samples were then processed with transverse cuts and then embedded in 

paraffin blocks. These blocks were then cut into 7 µm thick sections and investigated under 

immunofluorescence. After deparaffinization, tissue sections were rehydrated using alcohol and 

water. The samples were then thoroughly rinsed in distilled water and headed in a microwave 

oven with sodium citrate buffer (pH 6.0) at 95°C for 12 minutes. Samples were cooled at room 

temperature before being incubated with primary antibody. 

 

Goat anti-Snail antibody from Abcam (ab53519, Cambridge, UK) was diluted at 1:500 

ratio in Dako REAL antibody diluent (Dako Denmark A\S, Glostrup, Denmark) then applied to 

the sample tissue. Following the application of the primary antibody, the tissue sample was kept 

overnight in a humidified chamber at room temperature. Sections were rinsed with PBS and 

incubated with the secondary antibody, donkey anti-goat from Abcam (ab150129, Cambridge, 

UK) for one hour in a humidified chamber. The final stained kidney samples were observed and 

imaged using a BX51 microscope (Olympus, Tokyo, Japan) equipped with a DP71digital camera 

(Olympus, Tokyo, Japan). Following imaging they were processed with Cell A Imaging Software 

for Life Sciences Microscopy (Olympus Tokyo, Japan). 4',6-diamidino-2-phenylindole (DAPI), 

hematoxylin & eosin (H&E) and Mallory staining were also performed. 
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Kidney sections were analyzed focusing on two areas: cortex and medulla. For each of the 

listed areas, 5 non-overlapping fields were captured for analysis using 40× objective 

magnification, each field representing one image. Microphotographs were examined using 

ImageJ software (National Institutes of Health, Bethesda, MD, USA).  

 

Kidney sections were semi-quantitatively analysed and described as four categories in 

regards to the staining intensity: (0) indicating the absence of any reactivity, (1) a mild reactivity, 

(2) moderate reactivity, (3) strong reactivity (Figure 8.). Two researchers independently analysed 

the staining intensity. The amount of positive cells within each area (glomerulus, proximal 

convoluted tubule, distal convoluted tubule, collecting duct) were compared between the 

experimental diabetic groups and control groups. Distinct analyses were conducted for the 4 

sections at each time point, and then the data was aggregated for all areas of the control and 

diabetic rats and evaluated.  

 

 

3.5. Statistics 

 

Mann-Whitney test was used for statistical analysis to examine the differences between 

the control groups and the diabetic groups. Data analysis was conducted using GraphPad Prism 

(GraphPad Software, La Jolla, CA, USA). Data was expressed as a mean ± standard deviation, 

with p<0.05 serving as the marker of statistical significance. 
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H&E staining showed normal kidney morphology in both groups. In the 2 weeks and 2 

months groups H&E staining displays no obvious differences between both groups (figure 1 and 

2). However in 2 months old kidneys morphological changes in glomeruli of diabetic group 

occurs (figure 1).	 These changes are related to glomerular hypertrophy and podocyte lost, which 

can lead to mesangial expansion and glomerular sclerosis. 

 

 

Fig. 1. Transversal section through the kidney tissue with the areas of interest: kidney cortex at 

2 weeks in control (a) and diabetes (b); at 2 months in control (c) and diabetes (d). Scale bar 

25µm. Legend: dt- distal tubule; g- glomerulus; pt- proximal tubule; ctrl- control; DM- diabetes 

mellitus type 1. 



	 16	

 

Fig. 2. Transversal section through the kidney tissue with the areas of interest: kidney medulla at 

2 weeks in control (a) and diabetes (b); at 2 months in control (c) and diabetes (d). Scale bar 

25µm. Legend: Cd- collecting ducts; ctrl- control; DM- diabetes mellitus type 1. 

 

 

Mallory staining in the 2 weeks groups showed no obvious difference and normal kidney 

morphology is present in both diabetic and control groups (figure 3 and 4 a,b). In the 2 months 

groups we can see differences in regards to the extent of damage through replacement of 

podocytes with connective tissue cells (figure 3 and 4 c,d). 
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Fig. 3. Transversal section through the kidney tissue with the areas of interest: kidney cortex at 

2 weeks in control (a) and diabetes (b); at 2 months in control (c) and diabetes (d). Scale bar 

25µm. Legend: dt- distal tubule; g- glomerulus; pt- proximal tubule; ctrl- control; DM- diabetes 

mellitus type 1 
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Fig. 4. Transversal section through the kidney tissue with the areas of interest: kidney medulla at 

2 weeks in control (a) and diabetes (b); at 2 months in control (c) and diabetes (d). Scale bar 

15µm. Legend: Cd- collecting ducts; ctrl- control; DM- diabetes mellitus type 1. 

 

 

Snail positive cells were seen as green staining of cytoplasm within different areas of the 

cortex and medulla of kidneys during 2 weeks and 2 months after induction of diabetes mellitus 

(Figure 5 and 6). Cytoplasmic staining is better observed when images were merged with DAPI 

nuclear stain as shown on figure 5 and 6. 
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Fig. 5. Snail positive cells were seen as green staining of cytoplasm (arrows) within different 

areas of the cortex of kidneys. Co-localization of Snail and DAPI nuclear stain are shown in the 

far-right column (merge). Kidney cortex in control and DM at 2 weeks (a, b) and 2 months (c, d). 

Scale bar 25µm. Legend: dt- distal tubule; g- glomerulus; pt- proximal tubule; ctrl- control; DM- 

diabetes mellitus type 1 
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Fig. 6. Snail positive cells were seen as green staining of cytoplasm (arrows) within different 

areas of the medulla of kidneys. Co-localization of Snail and DAPI nuclear stain are shown in the 

far-right column (merge). Kidney medulla in control and DM at 2 weeks (a, b) and 2 months (c, 

d). Scale bar 25µm. Legend: dt- distal tubule; g- glomerulus; pt- proximal tubule; ctrl- control; 

DM- diabetes mellitus type 1 
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Threshold area percent of Snail positive cells in 2 weeks and 2 months of control and 

diabetic rat groups revealed statistically significant difference between control and diabetic group 

with higher threshold area percent of Snail in control groups (Figure 7.). 

 

 

Fig. 7. Threshold area percent of Snail positive cells in 2 weeks (2w) and 2 months (2m) of 

control and diabetic rat groups. Asterisk denotes significant difference: *p<0.05, **p<0.01. Data 

presented as M±SD. Legend: ctrl- control; dm- diabetes mellitus type 1 

 

 

Snail expression is mostly located within cortex in the proximal tubules. Strong intensity 

of Snail expression can be seen in proximal tubules in control in both 2 weeks and 2 months’ 

groups, while in both diabetic groups Snail staining intensity was mild (Figure 8.). 
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Fig. 8. Staining intensity of Snail in proximal tubules (pt) in 2 weeks (2w) and 2 months (2m) of 

control and diabetic rat groups. Legend: ctrl- control; dm- diabetes mellitus type 1. 

 

 

In the proximal tubules, the highest percentage of Snail positive cells was observed in 2-

weeks control group (90%), while the lowest percentage of Snail positive cells was observed in 2 

months’ diabetic group (12%). While remaining approximatively the same for the control group, 

the percentage of Snail positive cells in the proximal tubules of diabetic kidneys is decreasing 

from 55% after 2 weeks to 12% after 2 months (Figure 9.). 

Snail positive cells can also be found in the collecting ducts but the percentages remain 

very low there with 8% for the 2 weeks control group decreasing mildly to 7% after 2 months and 

with 2% in the 2 weeks diabetic group. Snail staining of collecting ducts is absent after 2 months 

in the diabetic group. 
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Fig. 9. Percentage of Snail positive cells in proximal tubules (pt) in 2 weeks (2w) and 2 months 

(2m) of control and diabetic rat groups. Legend: ctrl- control; dm- diabetes mellitus type 1. 
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In our research, HE and Mallory staining showed us the first signs of glomerulosclerosis 

in diabetic rats after 2 months. Changes in cells during diabetic nephropathy have been followed 

for a long time, but a lot of them still remain unclear. Wu et al., whom sacrificed rats after 1, 4, 

and 8 weeks, showed that autophagic disorders can contribute to early diabetic nephropathy, and 

that autophagy is important for regulation of cellular homeostasis in kidneys (18). Menini et al. 

showed that glomerular cell apoptosis was higher in diabetic rats vs controls after 4 and 6 months 

(19). Glomerular cell apoptosis, which can lead to glomerular sclerosis, is the aftermath of a 

process that started with glomerular hypertrophy itself leading to podocyte loss followed by 

proteinuria (19). Similar finding in other research, also with rats sacrificed after 4, 8 weeks and 6 

months, where the authors indicated glomerular apoptosis after 6 months of DM induction 

through the MIB-5 positivity which can lead to glomerular sclerosis (20). The limitation of our 

study in this regard is the lack of data on proteinuria level and blood level of urea and creatinine 

which could give important additional information about the development of diabetic 

nephropathy. 

 

Snail expression in healthy kidneys is important to maintain normal homeostasis of 

potential regenerative capacity in kidneys. During normal aging this expression is decreasing, but 

in diabetes mellitus Snail expression is impaired already at 2 weeks after diabetes induction 

showing very early negative effect on potential regenerative capacity in kidneys. Namely, Snail 

suppresses Cadherin-16 and consequently represses the kidney differentiation factor HNF-1β. 

This is a novel route by which Snail disrupts epithelial homeostasis. Snail activation is sufficient 

to induce EMT and kidney fibrosis in adult transgenic mice (5).  

 

After 2 months of diabetes induction, Snail expression in kidneys is slowly recovering but 

is still two times lower than in healthy 2-months control. This finding implies that other recovery 

mechanisms are involved in order to preserve potential regenerative capacity in kidneys. 

 

Snail expression is mostly located within cortex in the proximal tubules. This finding is 

important because proximal tubules make up a significant portion of the kidneys and carry out 

diverse regulatory and endocrine functions where numerous transporters are located (5). 

Additionally, number of inherited and acquired tubular disorders are connected to impaired 

transporters in the proximal tubules (5). Similarly, proximal tubules have intrinsic immune 
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characteristics with an active role in ischemic injury that can be observed in long term diabetes in 

kidney (10). It is therefore not surprising that proximal tubule-related occurrences are linked to 

the pathogenesis of a vast array of kidney diseases (10). 

 

Snail can also be seen in the collecting ducts in the kidneys medulla but the percentage of 

Snail positive cells remains very low there and is almost completely absent in the diabetic groups. 

Strong intensity of Snail expression can be seen in proximal tubules in control in both 2 weeks 

and 2 months’ group, while in both diabetic group Snail staining intensity was mild. Strong Snail 

intensity in proximal tubules is in line with earlier mentioned importance of Snail in regulatory 

kidney functions (11, 12). Namely, Snail controls major biological processes responsible for renal 

fibrogenesis, including mesenchymal reprogramming of tubular epithelial cells, shutdown of fatty 

acid metabolism, cell cycle arrest and inflammation of the microenvironment surrounding tubular 

epithelial cells (11, 12). All these processes are activated in diabetic nephropathy therefore the 

loss of Snail expression in diabetes contributes to development of diabetic nephropathy.  

 

Studying changes of kidneys during aging can allow insights into the kidney physiology 

of healthy rats and the diabetic pathophysiology of diabetic rats. Therefore, further studies giving 

information about the long-term effects of diabetes on kidney pathophysiology are needed to 

elucidate the role of Snail expression in diabetic nephropathy.  
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6. CONCLUSION 
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1. Snail expression in healthy kidneys is important to maintain normal homeostasis of 

potential regenerative capacity in kidneys. 

2. In diabetes mellitus Snail expression is impaired already at 2 weeks after diabetes 

induction. 

3. Snail expression in proximal tubules is important because of the key role of proximal 

tubules in regulatory kidney functions. 

4. Snail controls major biological processes responsible for renal fibrogenesis, mesenchymal 

reprogramming of tubular epithelial cells and homeostasis of the microenvironment 

surrounding tubular epithelial cells. 
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8. SUMMARY 
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Title: EXPRESSION PATTERN OF SNAIL IN THE KIDNEYS OF STREPTOZOTOCIN-

INDUCED DIABETIC RATS 

 

Objectives: The most prevalent cause of chronic kidney disease is diabetic nephropathy (DN), 

which can lead to end-stage renal disease (ESRD) and premature death in developed countries 

but knowledge about these changes is still unsatisfactorily. Specific factors can be used to study 

developmental pathways and changes in rat diabetic kidneys. Snail is a superfamily of genes that 

has been found to control gastrulation and neural crest EMT through E-cadherin down-regulation. 

Snail is located in the fibroblast growth factor receptor 1 (FGFR1) and has a regulatory role in 

kidney physiology by involvement in the pathway downstream of MAPK and Ras GTPase. The 

aim of the study was to analyse whether prolonged DM induces changes in immunofluorescence 

expression of Snail in rat’s kidney and how it contributes to DN during ageing. 

 

Materials and methods: Diabetes mellitus (DM) was induced by i/p injecting 55 mg/kg 

streptozotocin (STZ) to male Sprague-Dawley rats, and was validated by measuring blood 

glucose level. Control group received citrate buffer. Animals were sacrificed after 2 weeks and 2 

months. Cortex areas (glomeruli, proximal and distal tubules) and medullary areas (collecting 

ducts and distal tubules) were analysed with antibodies raised against Snail. 

 

Results: Snail expression is mostly located within cortex in the proximal tubules. Strong 

intensity of Snail expression can be seen in proximal tubules in control in both 2 weeks and 2 

months’ groups, while in both diabetic groups Snail staining intensity was mild. In the proximal 

tubules, the highest percentage of Snail positive cells was observed in 2-weeks control group 

(90%). Snail positive cells can also be found in the collecting ducts but the percentages remain 

very low there with 8% for the 2 weeks control group decreasing mildly to 7% after 2 months and 

with 2% in the 2 weeks diabetic group. Snail staining of collecting ducts is absent after 2 months 

in the diabetic group. 

 

Conclusion: Our findings suggest that Snail is linked to regulatory functions in kidney’s 

proximal tubules and that the loss of Snail expression in diabetic kidneys can lead to advanced 

DN. This finding can contribute to better understanding of the pathogenesis of DN during short-

term DM. 
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9. CROATIAN SUMMARY  
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NASLOV: IZRAŽAJ SNAIL-A U BUBREZIMA ŠTAKORA SA STREPTOZOTOCIN-

INDUCIRANIM DIJABETESOM  

 

Ciljevi: Najčešći uzrok kronične bolesti bubrega je dijabetička nefropatija (DN) koja može 

dovesti do terminalne bolesti bubrega (ESRD) i prerane smrti u razvijenim zemljama, no znanje o 

tim promjenama i dalje je nezadovoljavajuće. Specifični faktori mogu se koristiti za proučavanje 

razvojnih putova i promjena u dijabetičkim bubrezima štakora. Snail je superobitelj gena koji je 

pronađen za kontrolu gastrulacije i diferencijacije neuralnog grebena putem EMT-a kroz 

nizvodnu regulaciju E-cadherinq. Snail se nalazi u receptoru faktora rasta fibroblasta 1 (FGFR1) i 

ima regulatornu ulogu u fiziologiji bubrega uključivanjem u stazu nizvodno od MAPK i Ras 

GTPase. Analizirali smo da li produljeni DM uzrokuje promjene u imunofluorescencijskoj 

ekspresiji Snaila u bubrezima štakora i kako to doprinosi DN-u tijekom starenja.  

 

Materijali i metode: Diabetes mellitus (DM) je induciran i/p injektiranjem 55 mg/kg 

streptozotocina (STZ) mužjacima Sprague-Dawley štakora i validiran mjerenjem razine glukoze 

u krvi. Kontrolna skupina je primila citratni pufer. Životinje su žrtvovane nakon 2 tjedna i 2 

mjeseca. Područja kore (glomeruli, proksimalni i distalni tubuli) i medularna područja (sabirni 

kanali i distalni tubuli) analizirani su protutijelima na Snail. 

 

Rezultati: Izražaj Snaila se uglavnom nalazi unutar korteksa u proksimalnim tubulama. Jaki 

intenzitet ekspresije Snaila može se vidjeti u proksimalnim tubulama u kontroli u obje skupine od 

2 tjedna i 2 mjeseca, dok je u obje dijabetičke skupine intenzitet bojenja Snaila bio blag. U 

proksimalnim tubulama, najveći postotak stanica pozitivnih na Snail zapažen je u kontrolnoj 

skupini od 2 tjedna (90%). Snail pozitivne stanice se također mogu naći u sabirnim kanalima, ali 

postotci ostaju vrlo niski, s 8% u 2. tjednu kontrolne skupine koja se blago smanji na 7% nakon 2 

mjeseca i 2% u 2. tjednu u dijabetičkoj skupini. Izražaj Snaila je odsutan nakon 2. mjeseca u 

dijabetičkoj skupini. 

 

Zaključci: Naši nalazi sugeriraju da je izražaj Snaila povezan s regulacijskim funkcijama u 

proksimalnim tubulama bubrega, a gubitak izražaja Snaila kod dijabetičkih bubrega može dovesti 

do naprednog DN. Naš rad može doprinijeti boljem razumijevanju patogeneze DN tijekom 

kratkotrajnog DM. 
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