Title Uloga mitohondrijske dinamike u ishemijskoreperfuzijskom oštećenju i anestetičkom prekondicioniranju srčanih mišićnih stanica
Title (english) The role of mitochondrial dynamics in ischemia-reperfusion injury and anesthetic preconditioning of cardiac muscle cells
Author Ivan Žaja
Mentor Željko J. Bošnjak (mentor) VIAF: 214558522
Committee member Marko Ljubković (predsjednik povjerenstva)
Committee member Ivana Novak Nakir (član povjerenstva)
Committee member Mladen Boban (član povjerenstva)
Granter University of Split School of Medicine Split
Defense date and country 2017, Croatia
Scientific / art field, discipline and subdiscipline BIOMEDICINE AND HEALTHCARE Clinical Medical Sciences Anesthesiology and Reanimatology
Universal decimal classification (UDC ) 616 - Pathology. Clinical medicine
Abstract Istraživanje 1: Ishemijsko-reperfuzijsko oštećenje miokarda (I/R) je jedan od vodećih uzroka
smrti i invalidnosti diljem svijeta. Prethodna istraživanja sugeriraju ulogu mitohondrijske
fisije u oštećenju kardiomiocita. Međutim, molekularni mehanizmi mitohondrijske fisije
tijekom I/R ozljede još nisu u potpunosti jasni. Cilj istraživanja jest utvrditi molekularne
mehanizme koji kontroliraju aktivaciju dynamin sličnog proteina 1 (Drp1, ključnog proteina
mitohondrijske fisije) tijekom I/R oštećanja HL-1 kardiomiocita.
I/R oštećenje uzrokuje smrt kardiomiocita koja je praćena povećanjem mitohondrijske fisije,
reaktivnih kisikovih radikala (ROS), ekspresije aktiviranog Drp1 (pSer616 Drp1), te
smanjenja ekspresije inaktiviranog Drp1 (pSer637 Drp1), dok se ekspresija mitohondrijskih
fuzijskih proteina nije značajno promijenila. Blokiranje Drp1 aktivnosti s mdivi1 značajno
smanjuje smrt stanica, mitohondrijsku fisiju i aktivaciju Drp1 nakon I/R. Trolox, čistač ROS,
smanjuje ekspresiju pSer616 Drp1 i mitohondrijsku fisije nakon I/R. Imunoprecipitacija
ukazuje na to da ciklin ovisna kinaza 1 (CDK1) i protein kinaza C izoforma delta (PKCd)
vežu Drp1, čime se povećava mitohondrijska fisija. Blokiranje CDK1 i PKCd smanjuje
ekspresiju pSer616 Drp1, mitohondrijsku fisiju i smrt kardiomiocita. FK506, inhibitor
kalcineurina, blokira smanjenje ekspresije inaktiviranog pSer637 Drp1 i mitohondrijsku fisiju.
Naši rezultati prvi put pokazuju nove molekularne mehanizme koji upravljaju
mitohondrijskom fisijom tijekom I/R oštećenja kardiomiocita.
Istraživanje 2: Hiperglikemija može smanjiti kardioprotektivne učinke izoflurana tijekom
I/R oštećenja kardiomiocita. Prethodna istraživanja ukazuju na to da ROS i povećana
mitohondrijska fisija igraju ulogu u smrti kardiomiocita tijekom I/R. Kako bismo istražili
ulogu hiperglikemije u povećanoj proizvodnji ROS i mitohondrijskoj fisiji tijekom I/R koristili smo novi model kardiomiocita deriviranih iz ljudskih induciranih pluripotentnih
matičnih stanica (iPSC-CM).
Kardiomiociti diferencirani iz iPSC okarakterizirani su putem ekspresije CM specifičnih
markera imunohistokemijski i mjerenjem kontraktilnosti. iPSC-CM su izloženi različitim
uvjetima glukoze (5, 11, i 25 mM) tijekom 24 sata. Otvaranje mitohondrijske
permeabilizacijske pore (mPTP), oštećenje stanica i stvaranje ROS su bile krajnje točke
korištene za procjenu učinaka različitih eksperimentalnih uvjeta. Mitohondrijska fisija se
analizirala pomoću vizualizacije fragmentiranih mitohondrija na konfokalnoj mikroskopiji.
Ekspresija aktiviranog Drp1, ključnog proteina odgovornog za mitohondrijsku fisiju,
procijenjena je Western blotom.
Kardiomiociti su uspješno diferencirani od iPSC. U uvjetima povišene glukoze (11 i 25 mM)
značajno se povećava stvaranje ROS, ali amo 25 mM glukoza uzrokuje mitohondrijsku fisiju i
povećava ekspresiju aktiviranog Drp1. Izofluranom odgođeno otvaranje mPTP prisutno je u 5
i 11 mM glukozi, ali ne i u 25 mM glukozi. Čišćenje ROS s Troloxom ili inhibicija
mitohondrijske fisije s mdivi1 dovodi do vraćanja anestetičkog prekondicioniranja uvjetima
25 mM glukoze.
Abstract (english) Study 1: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death
and disability world- wide. Mitochondrial fission has been shown to be involved in
cardiomyocyte death. However, molecular machinery involved in mitochondrial fission
during I/R injury has not yet been completely understood. In this study, we aimed to
investigate molecular mechanisms of controlling activation of dynamin-related protein 1
(Drp1, a key protein in mitochondrial fission) during ischemia-reperfusion (I/R) injury of
HL1 cardiomyocytes.
I/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial
fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and
decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were
not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor
mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a
ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after I/R.
Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and
protein kinase C isoform delta (PKCd) bind Drp1, thus increasing mitochondrial fission.
Inhibiting Cdk1 and PKCd attenuated the increases in pSer616 Drp1, mitochondrial fission,
and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression
of inactivated pSer637 Drp1 and mitochondrial fission.
Our findings reveal the following novel molecular mechanisms controlling mitochondrial
fission during I/R injury of cardiomyocytes.
Study 2: Hyperglycemia can blunt the cardioprotective effects of isoflurane in the setting of
ischemia–reperfusion injury. Previous studies suggest that reactive oxygen species (ROS) and
increased mitochondrial fission play a role in cardiomyocyte death during ischemia–reperfusion injury. To investigate the role of high glucose concentration in ROS production
and mitochondrial fission during ischemia–reperfusion (with and without anesthetic
protection), we used the novel platform of human-induced pluripotent stem-cell (iPSC)–
derived cardiomyocytes (CMs).
Cardiomyocyte differentiation from iPSC was characterized by the expression of CM-specific
markers using immunohistochemistry and by measuring contractility. iPSC-CMs were
exposed to varying glucose conditions (5, 11, and 25 mM) for 24 hours. Mitochondrial
permeability transition pore opening, cell viability, and ROS generation endpoints were used
to assess the effects of various treatment conditions. Mitochondrial fission was monitored by
the visualization of fragmented mitochondria using confocal microscopy. Expression of
activated dynamin-related protein 1, a key protein responsible for mitochondrial fission, was
assessed by Western blot. Cardiomyocytes were successfully differentiated from iPSC.
Elevated glucose conditions (11 and 25 mM) significantly increased ROS generation, whereas
only the 25-mM high glucose condition induced mitochondrial fission and increased the
expression of activated dynamin-related protein 1 in iPSC-CMs. Isoflurane delayed
mitochondrial permeability transition pore opening and protected iPSC-CMs from oxidative
stress in 5- and 11-mM glucose conditions to a similar level as previously observed in various
isolated animal cardiomyocytes. Scavenging ROS with Trolox or inhibiting mitochondrial
fission with mdivi-1 restored the anesthetic cardioprotective effects in iPSC-CMs in 25-mM
glucose conditions.
Keywords
Reperfuzijska ozljeda miokarda
Mitohondrijska dinamika
Reaktivne vrste kisika
Keywords (english)
Myocardial Reperfusion Injury
Mitochondrial Dynamics
Reactive Oxygen Species
Language croatian
URN:NBN urn:nbn:hr:171:057529
Study programme Title: Obtaining a doctorate of science outside of doctoral studies Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti (doktor/doktorica znanosti)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2023-05-12 12:48:54