
Evaluation of in silico databases for the classification
of genomic alterations in oncological samples

Amann, Veronique Agnes

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Split, School of Medicine / Sveučilište u Splitu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:171:263695

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-16

Repository / Repozitorij:

MEFST Repository

https://urn.nsk.hr/urn:nbn:hr:171:263695
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.mefst.unist.hr
https://zir.nsk.hr/islandora/object/mefst:1584
https://repozitorij.svkst.unist.hr/islandora/object/mefst:1584
https://dabar.srce.hr/islandora/object/mefst:1584


 

 

 

UNIVERSITY OF SPLIT 

SCHOOL OF MEDICINE 

 

 

 

 

Véronique Amann 

 

 

 

EVALUATION OF IN SILICO DATABASES FOR THE CLASSIFICATION OF 

GENOMIC ALTERATIONS IN ONCOLOGICAL SAMPLES 

 

 

 

 

 

Diploma thesis 

 

 

Academic year: 

2021/2022 

 

 

 

Mentor: 

Prof. Johannes Brachmann, MD, PhD 

 

 

 

Coburg, August 2022 

 

 



 

 

 
UNIVERSITY OF SPLIT 

SCHOOL OF MEDICINE 

 

 

 

 

Véronique Amann 

 

 

 

EVALUATION OF IN SILICO DATABASES FOR THE CLASSIFICATION OF 

GENOMIC ALTERATIONS IN ONCOLOGICAL SAMPLES 

 

 

 

 

 

Diploma thesis 

 

 

Academic year: 

2021/2022 

 

 

 

Mentor: 

Prof. Johannes Brachmann, MD, PhD 

 

 

 

Coburg, August 2022 

 



 

 

TABLE OF CONTENTS 

 

1. INTRODUCTION .............................................................................................................. 1 

1.1 Genome ........................................................................................................................ 2 

1.2 Proteins ........................................................................................................................ 3 

1.3 Mutations ..................................................................................................................... 5 
1.3.1 Types of mutations ................................................................................................... 5 
1.3.2 Effects of mutations ................................................................................................. 7 

1.4 Genetic basis of cancer ................................................................................................ 8 

1.5 Next-Generation Sequencing ....................................................................................... 9 

1.6 Bioinformatics ........................................................................................................... 10 
1.6.1 Online databases .................................................................................................... 10 
1.6.2 In silico prediction tools ......................................................................................... 11 

2. OBJECTIVES ................................................................................................................... 12 

3. MATERIALS AND METHODS ...................................................................................... 14 

a. First (major) part: Identification and evaluation of in silico databases ......................... 15 

b. Second (minor) part: Pilot study ................................................................................... 15 

4. RESULTS ......................................................................................................................... 18 

a. First (major) part: Identification and evaluation of in silico databases ......................... 19 

b. Second (minor) part: Pilot study ................................................................................... 24 

5. DISCUSSION ................................................................................................................... 28 

6. CONCLUSION ................................................................................................................. 31 

7. REFERENCES ................................................................................................................. 33 

8. SUMMARY ...................................................................................................................... 38 

9. CROATIAN SUMMARY ................................................................................................ 40 

10. CURRICULUM VITAE ............................................................................................... 43 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

I would sincerely like to thank my mentor Prof. Brachmann for making this final work 

possible. 

Furthermore, I would like to thank the team of the department of pathology. Especially Prof. 

Aigner, for offering prompt help, whenever I needed it. 

I would also like to thank Ms. Gaudiello warmly, for offering her great organizational talent 

and help throughout this project. 

Finally, I would like to express my heartfelt thanks to my family and close friends, for always 

supporting me. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF ABBREVIATIONS 

 

DNA - deoxyribonucleic acid 

RNA - ribonucleic acid 

HGP - human genome project 

BRCA1 - breast cancer gene 1 

BRCA2 - breast cancer gene 2 

EGFR - epidermal growth factor receptor 

KRAS - kirsten rat sarcoma viral oncogene homolog 

HPV - human papillomavirus 

NGS - next-generation sequencing 

GRCh38 - genome research consortium human build 38 

HGVS - human genome variation society 

VCF - variant call format 

ACMG - american college of medical genetics and genomics 

VUS - variant of unknown significance 

SNP - single-nucleotide polymorphism 

nsSNP - non-synonymous single nucleotide polymorphisms 

MCC - matthews correlation coefficient 

PMID - pubmed identifier 
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1.1 Genome  

 

The entirety of the total genetic information of an organism allowing it to function - this 

is the genome. In living beings, this information is retained in the DNA (deoxyribonucleic acid) 

in form of chromosomes. Genes are small parts of DNA coding for RNA (ribonucleic acid) and 

proteins, that are needed by the organism for its existence. The transcriptome is the expression 

of all RNA molecules encoded by the genome and the proteome is the full expression of its 

proteins. There is a difference between eukaryotes and prokaryotes regarding the location of 

storage of the genome. Former carry their genome in the nucleus, which is a cell component 

surrounded by a membrane, whereas in the latter, the genome floats freely, without a membrane, 

in the cytoplasm - the nucleoid. The science of exploring genomes is called genomics. (1) 

The Human Genome Project (HGP) was a universal collaboration of scientists, aiming to 

decipher the complete genome of the species Homo Sapiens. The project started in 1990 and 

finished 13 years later, in 2003. In the beginning, chromosomes were split into large 

overlapping segments. Sequencing and alignment of these segments were then performed. The 

parts, that were still left were also sequenced at the end. Decoding every human gene in the 

DNA and making the results available for everyone was a big milestone for further research in 

many scientific areas (2).  

In molecular medicine, for example, sequencing the whole human genome made 

diagnosing and treating gene-linked diseases on a DNA level possible. Understanding diseases 

at the site of origin serves as a great base for improved personalized medicine and disease 

prevention (3). 

Even though, the HGP was seen as an epiphany of the complete human genome, around 

15 % were not sequenced because of restrictions in technology. During the next decade, 

researchers could reduce this number to 8%. By applying state-of-the-art technology in 

sequencing, it was possible to complete the missing sequences of the genome. Scientists used 

a complete hydatidiform mole, an anucleated ovum fertilized by a sperm, for this task. After 

the fusion of the germ cells, the evolving cell comprised only a paternal chromosome, which 

made sequencing for scientists easier, since a differentiation between the chromosomes was not 

necessary anymore. In the end, 3,05 billion DNA base pairs were sequenced in total, with 0,3% 

of the genome still carrying some inaccuracies. Rectifying these sequences enabled researchers 

for having a new mission in the future (4) (Figure 1). 
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Figure 1. Timeline of the Human Genome Project 

Source: https://www.nature.com/articles/d41586-021-01506-w 

 

1.2 Proteins 

 

“Proteins serve a variety of functions within cells. Some are involved in structural 

support and movement, others in enzymatic activity, and still others in interaction with the 

outside world. Indeed, the functions of individual proteins are as varied as their unique amino 

acid sequences and complex three-dimensional physical structures (5).” 

Amino acids are the basic component of proteins. Carbon is in the center of each amino 

acid, attached to it, are a hydrogen-, carboxyl-, and an amino group, plus an R group, that can 

vary. The R group determines to which class of amino acids it belongs (Figure 2) (6). 

The individual formation of every protein is defined by the genetic code of each gene. 

This leads to a unique sequence of amino acids and distinct bonds, that are responsible for many 

different “three-dimensional structures” or “conformations” (7). 

The primary structure of a protein describes the sequence of amino acids in a chain. This 

sequence is fixed and corresponds to the information of the gene, that codes for the 

corresponding protein (8). 

The amino acid chain has, because of peptide bonds, many freely lying keto- and amino 

groups. These groups form interaction with each other, leading to the formation of the 
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secondary structure. The sidechains of the amino acids are not involved in this process. The 

most common secondary structures are called α-helix and β-sheet (8). 

The tertiary structure describes the three-dimensional structure of a protein and develops 

through torsion of the secondary structure. Now, the side chains of the amino acids form 

interactions and these are stabilized by covalent and non-covalent connections (disulfide 

bridges, hydrogen bonds, ionic interactions, hydrophobe interactions) (8). 

 

 

Figure 2. Subgroups of proteinogenic amino acids 

Source: https://upload.wikimedia.org/wikipedia/commons/a/ac/AAs_table.png 
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The quaternary structure describes symbioses of proteins. Many three-dimensional units 

form together a bigger functional unit. Enzyme complexes, ribosomes, or protein fibers are 

examples of such supra-molecular structures (8). 

 

1.3 Mutations 

 

A mutation is “any change in the DNA sequence of a cell” (9). Errors during cellular 

division serve as intrinsic factors to the emergence of mutations whereas ionizing radiation, 

chemicals or viruses can lead as DNA-harming, extrinsic factors to the development of 

mutations. Mutations can be categorized as either damaging, favorable or neutral. Germline 

mutations take place in egg- and sperm cells and thus can be transmitted to the next generation, 

whereas in somatic mutations no risk for heritage is present. Diseases, such as cancer, can 

follow different mutations. A mutation with an unknown impact can also be called a variant 

(8). 

 

1.3.1 Types of mutations 

 

Mutations are categorized into three main types: 

• genome mutation 

• chromosome mutation 

• gene mutation (10) 

Each animal has its characteristic number of chromosomes. In humans, this would be a 

set of 23 chromosomes twice. In a genome mutation, also called numerical chromosomal 

aberration, the number of chromosomes in a cell is changed. If the complete set of chromosomes 

is multiplied, it is called polyploidy. If single chromosomes are multiplied or missing, it is 

called aneuploidy. Most genome mutations cannot be survived by humans. The main cause of 

genome mutations is a non-disjunction during mitosis or meiosis. Down syndrome, Turner 

syndrome and Klinefelter syndrome are known diseases caused by aneuploidy in the germline 

(11).  

A chromosome mutation, also called structural chromosomal aberration, is a change in 

the structure of one or more chromosomes. The genetic information is disrupted or rearranged. 

Depending on how many genes are affected by this change, it can lead to more or less serious 

complications.  

Chromosome mutations can be divided into: 
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• Deletion 

• Duplication 

• Insertion 

• Inversion 

• Translocation 

• Formation of isochromosomes 

Chromosome mutations are often inherited from one parent, that already has an existing 

mutation or they can occur because of mistakes during meiosis, especially during the crossing 

over. Well known examples are the cri-du-chat syndrome or in leukemia patients the 

Philadelphia chromosome (12). 

A gene mutation is the change of the genetic information in a gene. It could lead to an 

altered sequence of nucleotides, which can have an impact on protein synthesis. Gene mutations 

are point mutations or frameshift mutations, that potentially lead to a stop codon (13). 

A point mutation is an alteration in a single base. Therefore, this could lead to one 

different amino acid during translation. It is caused by a substitution. One base is substituted 

by another base. The substitution can be further subdivided into a transition or a transversion 

(13). 

In a transition, one purine base is exchanged for another purine base (Adenine, 

Guanine). Whereas in a transversion a purine base gets exchanged with a pyrimidine base 

(Cytosine, Thymine, Uracil) or vice versa. Depending on which codon results from the 3 

successive bases, the point mutation can be further divided into a silent mutation, a missense 

mutation or a nonsense mutation (13).  

In a silent mutation, the codon still codes for the same amino acid, even though one base 

has changed. In a missense mutation, the codon codes for a different amino acid and in a 

nonsense mutation the codon does not code for an amino acid and leads to a stop codon (13).  

In a frameshift mutation, one or more bases can be inserted (insertion) into the sequence 

of the DNA or deleted (deletion), leading to a shift in the sequence that is following, resulting 

in different amino acids and different proteins.  If only one base is inserted or deleted, it is also 

often assigned to a point mutation. In the case of an insertion or deletion of three bases or a 

multiple of three, only one or a few proteins are affected (13).  

For example, a mutation in the BRCA1 or BRCA2 gene, that increases the risk of developing 

breast or ovarian cancer (14). 
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1.3.2 Effects of mutations 

 

Another way of categorizing mutations is through the consequences for an organism. It 

can influence the structure and function of proteins. This can also influence the phenotype of 

an organism (10). Effects of mutations can be: 

• Silent mutation 

• Neutral mutation 

• Loss-of-function mutation 

• Gain-of-function mutation 

• Conditional mutation 

• Lethal mutation 

• Mutations as an evolutionary factor 

A silent mutation does not have an influence on the structure or function of a protein. 

This is possible for example, if the mutation is in the non-coding part of the DNA or if a 

different base sequence still leads to the same amino acid, because of the redundancy of the 

genetic code. This is also called a synonymous mutation. There is mostly more than one codon 

that codes for an amino acid. This can be well seen in the genetic code chart (10) (Figure 3). 

 

 

Figure 3. Genetic code chart 

Source: https://de.wikipedia.org/wiki/Genetischer_Code 
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A neutral mutation leads to a different amino acid sequence in a protein, but it has no 

effect on the function of the protein. In variable regions of a protein, an exchange of proteins 

or a gab is possible, without leading to a loss of function. The protein, that has a substituted 

amino acid, still belongs to the same protein group (10).  

A loss-of-function mutation is often a frameshift or missense mutation. It leads to a 

protein, which has lost its function. A mutation in the BRCA1 or BRCA2 gene is an example 

of this type of mutation (10).  

In a gain-of-function mutation, the produced protein has an expanded function. This is 

the case in some types of cancer when the mutated protein leads to excessive cell growth. For 

example, a mutation in the EGFR in lung cancer or the mutation in the KRAS gene in colon 

cancer (10).  

A conditional mutation can be a cause of different phenotypes. One common condition 

is temperature. In the organism, the enzyme protein is only changed under a certain temperature. 

This can be well-observed in some kinds of rabbit breeds. A mutated gene is responsible for 

black fur, which is inactive during high temperatures. Rabbits have light fur, because of the 

body temperature. Only the extremities are covered with black fur (10). 

A lethal mutation leads always to the death of the organism. For example, mutations in 

the human germline (10). 

Mutations do not only have neutral or negative consequences. They also contribute to 

biodiversity on earth, through a change in the genome, which causes positive results in the 

organism. If this mutation carries on through natural selection, it leads to greater biological 

diversity. Humans for example, that are affected by sickle cell anemia, are protected from 

malaria through this mutation. Therefore, sickle cell anemia is common in areas affected by 

malaria (10). 

 

1.4 Genetic basis of cancer 

 

In all cases, cancer is caused by mutations in genes controlling the growth of cells and 

mitosis. Genes coding for proteins that are responsible for cell adhesion, growth and division 

are called proto-oncogenes. If a mutation occurs in these genes, they become oncogenes, which 

can cause cancer. On the other hand, the opponent of oncogenes - the tumor suppressor genes, 

inactivate oncogenes. Therefore, a mutation in tumor suppressor genes, that results in activation 

of oncogenes, can also be a cause of cancer development (15).  
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Fortunately, only a very small number of mutations are causing cancer. Most mutated 

cells die, because of a lack of power to survive compared to non-mutated cells and of these 

small number of mutated cells, again, only a few are progressing to cancer, because of still 

functioning feedback mechanism to control cell growth (15).  

Furthermore, our immune system, which is also triggered by atypical proteins, can 

recognize mutating cells and destroy them. This is the reason for an elevated risk of the 

development of cancer in immunosuppressed patients. Finally, usually many different 

mutations in growth-promoting genes are needed for the development of cancer (15).  

Nothing less than bad odds during the precise process of replication and repairing 

mechanism in the production of countless cells each year can be the reason for cancer. 

Nevertheless, certain factors can increase the risk of occurrence of cancer: 

• Aging, 

• Ionizing radiation, 

• Chemical substances (e.g. smoke), 

• Physical irritants (e.g. heat), 

• Hereditary tendencies (e.g. Lynch-Syndrome) and 

• Viruses (e.g. HPV) (15). 

 

1.5 Next-Generation Sequencing  

 

The traditional method of sequencing, which is based on HLPC, that was developed by 

Sanger and therefore also called Sanger sequencing, is a very expensive method and had a small 

read-out, which made sequencing of only a small number of genes possible at a time. 

Nowadays, Sanger- sequencing is mostly replaced by Next-Generation Sequencing (NGS) 

technologies. These techniques have much higher throughput and are less expensive compared 

to standard sequencing. For instance, the human genome project, which took over a decade by 

Sanger sequencing, would now be possible in just one day (16).   

NGS can roughly be divided into panel-sequencing and whole exome or genome 

sequencing. In whole-genome sequencing, the complete genome is sequenced and compared to 

the standard genome GRCh38. This also enables the inclusion of promotor and regulatory 

regions of the genome. This type of sequencing is a great approach for discovering uncommon 

or new mutations throughout the genome (16).  
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The sequencing of cDNA fragments, that were created from RNA via reverse 

transcriptase is called transcriptome-sequencing. The expression of RNA and variations in 

splicing alterations can be resolved in this way (16). 

 

1.6 Bioinformatics 

 

The discipline bioinformatics is a combination of sciences of biology, physics, 

mathematics and computation. It is a growing field in natural sciences for the management, 

analyzation and interpretation of huge amounts of data. The HGP and the following whole 

genome sequencing of many other species set a base for the application of bioinformatics. The 

two main instruments used by bioinformaticians are computer software programs, that are 

needed for an easy analyzation of data and the world wide web, to provide uncomplicated access 

to data (17). 

 

1.6.1 Online databases 

  

Because the quantity of biological data is rapidly increasing, online databases working 

with quick processing of information, a user-friendly scheme and algorithm software programs 

are required for the administration of these data in the bioinformatic analysis. There are 

different databases online, because of different sources of information. These databases can 

also be used by scientists and practitioners to check DNA sequences on the responsibility for 

causing disease, for example (18). 

Bioinformatics is not only used on a genome level. In functional genomics, it also 

assesses resulting proteins and their function on the proteome and transcriptome level. 

In the clinical setting, these databases could play a big role in the treatment of diseases caused 

by genetic mutations (18). 

VarSome.com is one example of an online meta-database for the collection of biological 

information. It allows the exploration, assembling and investigation of the effects of human 

genetic variations. Experts from all over the world are sharing their knowledge of human 

genomics on one, easily accessible website. More than 30 databases are linked by VarSome. 

Over 33 billion data points express more than 500 million variants. A certain algorithm has 

been introduced to handle this large amount of data. Each variant has a certain location on the 

genome, similar variations are spotted, the type, such as frameshift, insertion-deletion, etc. is 
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determined, as well as the consequences of coding. VarSome can be used similarly to a browser. 

The matter in question can be searched for in different ways:  

“gene name, transcript symbol, genomic location, variant ID, HGVS nomenclature or a single 

line from VCF files (19,20)”. If there is a question about a gene or a transcript, the formal name 

of the gene, a description of the effect of the protein and possible disease in an association are 

listed. 

The ACMG guideline classifies the questioned variant into one of five different groups: 

• Pathogenic  

• Likely pathogenic  

• Variant of uncertain significance (VUS)  

• Likely benign 

• Benign (21) 

Also, data will be presented concerning the frequency in the population. Pathogenicity 

prediction scores are determined by different in silico prediction tools. VarSome uses 133 

datasets of in silico prediction tools (19). 

 

1.6.2 In silico prediction tools 

 

If only one nucleotide is altered in a DNA sequence it is called a single-nucleotide 

polymorphism (SNP). SNPs are responsible for the diversity in humans but can also contribute 

to the development of different diseases, such as cancer, diabetes or neurodegenerative diseases. 

There are many types of SNPs, but nonsynonymous single-nucleotide polymorphisms (nsSNPs) 

can change the structure, biochemistry and function of proteins regarding “folding 

characteristics, charge distribution, stability, dynamics, and interactions with other proteins 

(22).” 

To predict easily and inexpensively the degree of consequences in the structure or 

function of a protein, biologists and scientists are using in silico prediction tools, working with 

computational algorithms (22). 

In silico databases use mainly three approaches to determine a result for prediction. 

They are based on: 

• Conservation/homology 

• Protein structure and function 

• Machine learning approaches (23)
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Firstly, the major aim of this work was to identify and evaluate the most important in 

silico databases, that are commonly used by VarSome, regarding basic principles of function, 

scores and thresholds. Furthermore, it was intended to assign the web link and PMID (PubMed 

identifier) number to each in silico database. 

 

Secondly, the minor part of this work was to investigate in a pilot study, how well the 

classifications of yet unidentified genomic alterations in oncological samples, predicted by in 

silico databases, are congruent with the classifications determined by the molecular oncology 

of the department of pathology at the medical center in Coburg. The classifications of genomic 

alterations made by the department of pathology were established from careful literature-based 

single variant analysis.
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a. First (major) part: Identification and evaluation of in silico databases 

 

The first (major) part of this work intended to extend and validate the analytical tools 

for variant classification used in the molecular oncology of the department of pathology at the 

medical center Coburg. 

For this reason, VUS (variants of unknown significance), collected from the dataset of 

comp arrays from the year 2021 (n=92), were entered into VarSome. VarSome was chosen as 

the meta-database, because of routine use by pathologists at the medical center Coburg. The in 

silico tools, that appeared most often during the predictions of VUS, were identified as the most 

common in silico databases used by VarSome.  

The evaluation of in silico tools included for each one: 

• Basic principles of function 

• Classification output (scores, thresholds) 

• Web-link 

• PMID number 

This information was collected in the form of two tables for a better overview.  

 

b. Second (minor) part: Pilot study 

  

The second (minor) part of this study was conducted in form of a pilot study. It 

concentrated on the grade of congruency between classifications of VUS in oncological 

samples predicted by in silico databases and classifications determined via careful literature 

based single variant analysis by the molecular oncology of the department of pathology at the 

medical center in Coburg. 

Therefore 92 genetic alterations taken from comp-arrays, that were collected from the 

year 2021, were used in this study. These were classified via careful literature based single 

variant analysis by the department of pathology according to the ACMG guidelines into benign, 

likely benign, VUS, likely pathogenic or pathogenic. The five categories were shortened to 

three categories for better comparison with predictions of in silico tools in: 

• Benign (benign + likely benign)  

• VUS  

• Pathogenic (pathogenic + likely pathogenic). 

Each genetic alteration was entered into VarSome, showing a prediction, derived from 

the average of multiple predictions made by different in silico databases. In this study, the most 
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common in silico databases used by VarSome were selected for the analyzation of the 

classifications made by the department of pathology.  

Only genetic alterations, collected from comp-arrays, that were collected during the year 

2021, were included in this study. Also, only variants, that could get an unambiguous predictive 

result were included. 

Genetic alterations without a prediction result in every in silico prediction tool were 

excluded from this study. 58 genetic alterations remained for the analysis.  

 

Statistical analysis 

 

The grade of congruency was evaluated based on the comparison of the predicted 

classification made by each in silico database (benign/pathogenic) with the actual classification 

determined by the department of pathology via careful literature based single variant analysis 

(26 benign, 32 pathogenic).  

After entering the 58 genetic alterations into VarSome, the predicted output from the in 

silico databases was used to create a binary confusion matrix (Figure 4).  

 

 

Figure 4. Confusion matrix 

Source: http://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/ 

 

Pathogenic predictions were encoded by the number one, whereas benign predictions 

received the coding number zero. These results were subdivided into 4 categories: true positive, 

true negative, false positive and false negative. 
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Logistic regression was used for the statistical analysis provided by the statistic program 

JASP version 0.16.3 (University of Amsterdam), to determine for each in silico tool: 

• Accuracy [TP + TN / (TP + TN + FP + FN)] x 100 

• Matthews Correlation Coefficient (MCC)  

(TP x TN) – (FP x FN) / √ (TP+FP)(TP+FN)(TN+FP)(TN+FN)  

By comparing the actual classifications made by the pathology department with the 

predicted classifications from the in silico databases, the accuracy for every in silico database 

was calculated.  

In contrast to accuracy, the MCC takes all four categories into account (true positive, 

true negative, false positive and false negative.  Only if the in silico database reached good 

results in every category, the MCC will show high scores. The MCC score ranges from +1 

(always correct prediction) to -1 (always false prediction), a score of 0 resembles a random 

prognostication. A MCC score of 0.5 or higher was set as the threshold for acceptability, which 

is equivalent to an accuracy of >75% (24).    
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a. First (major) part: Identification and evaluation of in silico databases 

 

After entering 92 genetic alterations, collected from the dataset of molecular oncology of 

the department of pathology at the medical center Coburg, into VarSome, 20 in silico databases 

were identified as the most important prediction tools commonly used by VarSome. These are 

BayesDel addAF, BayesDel noAF, DEOGEN2, MetaLR, MetaRNN, MetaSVM, REVEL, 

EIGEN, EIGEN PC, FATHMM, FATHMM-MKL, FATHMM-XF, LIST-S2, LRT, Mutation 

Assessor, MutationTaster2, PrimateAl, PROVEAN, SIFT and SIFT4G (Table 1 and Table 2). 

In Table 1, the basic mechanism of function was summarized for each in silico database.  

The in silico databases were subdivided into meta scores and individual prediction tools 

according to their basic mechanism of function (Table 1). Meta scores combine the results of 

different individual prediction tools to obtain a prediction result.  

 

Table 1. Basic principles of in silico databases 

In silico databases Basic principles of function 

Meta scores  
BayesDel addAF  

BayesDel add allele 

frequency  

 

BayesDel noAF  

BayesDel no allele 

frequency 

“met-score that combines deleteriousness predictors in the naïve Bayesian 
approach and uses ClinVar (Landrum et al., 2014) variants as a standard to 
determine the cutoff value. For this predictor, the set that integrates 
maximum and minor allele frequencies across populations (addAF) 
presents superior performance to that without allele frequencies (noAF) 
(Feng, 2017) (24)” 
 

DEOGEN2 “protein sequence-based predictor that utilizes evolutionary information as 
well as contextual information, such as the relevance of the gene 
containing the variant or the interactions of the encoded protein (25)” 
 

MetaLR “MetaSVM and MetaLR are two ensemble scores based on Support Vector 
Machine (SVM) and Logistic Regression (LR), respectively. Both methods 
integrate the information of 11 non-ensemble predictors (PolyPhen-2, 
SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, 
PhD-SNP, SNAP, SNPs&GO and MutPred), three conservation scores 
(GERP++, SiPhy and PhyloP) and four ensemble scores (CADD, PON-P, 
KGGSeq and CONDEL (26)” 
 

MetaRNN 

Meta recurrent neural 

network 

 

“recurrent neural network (RNN) based ensemble prediction score, which 
incorporated 16 scores (SIFT, Polyphen2_HDIV, Polyphen2_HVAR, 
MutationAssessor, PROVEAN, VEST4, M-CAP, REVEL, MutPred, MVP, 
PrimateAI, DEOGEN2, CADD, fathmm-XF, Eigen and GenoCanyon), 8 
conservation scores (GERP, phyloP100way_vertebrate, 
phyloP30way_mammalian, phyloP17way_primate, 
phastCons100way_vertebrate, phastCons30way_mammalian, 
phastCons17way_primate and SiPhy), and allele frequency information 
from the 1000 Genomes Project (1000GP), ExAC, and gnomAD (27)“ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566697/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566697/#B14
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MetaSVM 

Meta-analytic support 

vector machine 

“MetaSVM and MetaLR are two ensemble scores based on Support Vector 
Machine (SVM) and Logistic Regression (LR), respectively. Both methods 
integrate the information of 11 non-ensemble predictors (PolyPhen-2, 
SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, 
PhD-SNP, SNAP, SNPs&GO and MutPred), three conservation scores 
(GERP++, SiPhy and PhyloP) and four ensemble scores (CADD, PON-P, 
KGGSeq and CONDEL (26)” 
 

REVEL 

Rare exom variant 

ensemble learner 

“based on a combination of scores from 13 individual tools: MutPred, 
FATHMM v2.3, VEST 3.0, PolyPhen-2, SIFT, PROVEAN, 
MutationAssessor, MutationTaster, LRT, GERP++, SiPhy, phyloP, and 
phastCons. REVEL was trained using recently discovered pathogenic and 
rare neutral missense variants, excluding those previously used to train its 
constituent tools (28)” 
 

  Individual prediction tools 

EIGEN  

 

 
 
 
 
 
 
 
EIGEN PC 

EIGEN makes use of a variety of functional annotations in both coding and 
noncoding regions (such as made available by the ENCODE and Roadmap 
Epigenomics projects), and combines them into one single measure of 
functional importance. Eigen is an unsupervised approach, and, unlike 
most existing methods, is not based on any labelled training data. Eigen 
produces estimates of predictive accuracy for each functional annotation 
score, and subsequently uses these estimates of accuracy to derive the 
aggregate functional score for variants of interest as a weighted linear 
combination of individual annotations (29)” 

 
“based on the eigendecomposition of the annotation covariance matrix, and 
using the lead eigenvector to weight the individual annotations (30)” 

 
FATHMM 

Functional analysis 

through hidden markov 

models 

“Our software and server is capable of predicting the functional effects of 
protein missense mutations by combining sequence conservation within 
hidden Markov models (HMMs), representing the alignment of 
homologous sequences and conserved protein domains, with 
"pathogenicity weights", representing the overall tolerance of the 
protein/domain to mutations. (31)” 
 

FATHMM- MKL 
Fathmm- multiple kernel 

learning 

“integrates functional annotation information from the ENCODE with 
nucleotide-based HMMs (32)” 

FATHMM- XF 

Fathmm with extended 

features 

“By using an extended set of feature groups and by exploring an expanded 
set of possible models, the new method yields even greater accuracy than 
its predecessor on independent test sets. 
Unlike FATHMM-MKL, FATHMM-XF models are build up on single-
kernel datasets. The models may then learn interactions between data 
sources that help to boost its accuracy in all regions of the genome (33)” 
 

LIST- S2 “first, it aligns (high Local identity Pair-wise Sequence Alignment, LPSA) 
the query sequence to all protein sequences in the UniProt Swiss-
Prot/TrEMBL database and then it identifies the most relevant homologies 
based on their local identity to the query sequence around that position. 
And finally, it estimates the potential deleteriousness of mutations based on 
Taxonomy distance of species with variations to the query (34)” 
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LRT 

Likelyhood ratio test 

“using a comparative genomics data set of 32 vertebrate species (35)” 
 

Mutation Assessor “conservation-based approach. It distinguishes between conservation 
patterns within aligned families (conservation score) and sub-families 
(specificity score) of homologs and so attempts to account for functional 
shifts between subfamilies of proteins (36)” 
 

MutationTaster2 “uses regulatory features, degree of evolutionary conservation and splice 
site predictions as the input for a naïve Bayes classifier (37)” 
 

PrimateAl “trained on a dataset of ~380,000 common missense variants from humans 
and six non-human primate species, using a semi-supervised benign vs 
unlabeled training regimen. The input to the network is the amino acid 
sequence flanking the variant of interest and the orthologous sequence 
alignments in other species, without any additional human-engineered 
features. To incorporate information about protein structure, PrimateAI 
learns to predict secondary structure and solvent accessibility from amino 
acid sequence and includes these as sub-networks in the full model. The 
total size of the network, with protein structure included, is 36 layers of 
convolutions, consisting of roughly 400,000 trainable parameters (38)” 
 

PROVEAN 

Protein variation effect 

analyzer 

“based on the change, caused by a given variation, in the similarity of the 
query sequence to a set of its related protein sequences (39)” 

SIFT  

Sorting intolerant from 

tolerant 

 

SIFT4G 
Sorting intolerant from 

tolerant for genomes 

“based on sequence homology and the physical properties of amino acids 
(40)” 
 
 
“faster version of SIFT (41)“ 

 

In Table 2, web links, classification output in form of scores and threshold, as well as 

the PMID number were summarized for each in silico database.  

The web link leads to the homepage of the corresponding in silico database. Data for 

prediction can also be directly entered at this site.  

The classification output describes the specific score and threshold belonging to each in 

silico database for classifying predictions. Mostly 2 categories are defined by the threshold: 

likely benign/ benign/ tolerated/ neutral/ polymorphism and likely pathogenic/ deleterious/ 

damaging/ pathogenic/ disease causing. Exceptions are Mutation Assessor, which has 4 

categories defined by thresholds: neutral, low, medium and high and MutationTaster2, which 

splits its results into “the prediction is true” or “MutationTaster2 comes to a different 

conclusion”. 

The PMID number directly leads to the research paper of the corresponding in silico 

database, published by the developer of the in silico tool. 
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Table 2. Web links, classification output and PMID number of in silico databases 

In silico 

databases 

Web-links Classification output PMID 

number 

Meta Scores                               

BayesDel addAF  

BayesDel add allele 

frequency  

 

BayesDel noAF  

BayesDel no allele 

frequency 

https://fengbj-
laboratory.org/BayesDel/
BayesDel.html 

score: -1.29334 to 0.75731  
threshold with MaxAF: 
<0.0692655: likely benign 
≥0.0692655: likely pathogenic 
others: uncertain significance 
threshold without MaxAF: 
<-0.0570105: likely benign 
≥-0.0570105: likely pathogenic 
others: uncertain significance 
 

31484976 

DEOGEN2 https://bio.tools/ 
DEOGEN2 

score: 0 to 1 
threshold:  
<0.5: tolerated 
≥0.5: deleterious 
 

28498993 

 

MetaLR no results found score: 0 to 1 
threshold: 
<0.5 tolerated 
≥0.5 damaging 
 

 

MetaRNN 

Meta recurrent neural 

network 

 

http://www.liulab.science/
metarnn.html 

score: 0 to 1 
threshold: 
<0.5 tolerated 
≥0.5 damaging 
 

https://doi.o
rg/10.1101/
2021.04.09.
438706 

MetaSVM 

Meta-analytic support 

vector machine 

no results found score: -2.0058 to 3.0399 
threshold:  
<0: tolerated 
≥0: damaging 
 

28149325 
https://doi.o
rg/10.1101/
805051 

REVEL 

Rare exom variant 

ensemble learner 

https://sites.google.com/si
te/revelgenomics/about?a
uthuser=0 

score: 0 to 1 
threshold: 
<0.5: benign  
≥0.5: pathogenic 
 

27666373 

 

Individual prediction tools 

EIGEN  

 

EIGEN PC 

http://www.columbia.edu/
~ii2135/eigen.html 

score: 
threshold:  
the larger the score the more likely 
the variant has a damaging effect 

26727659 
 

FATHMM 

Functional analysis 

through hidden markov 

models 

http://fathmm.biocompute
.org.uk/ 

score: -16.13 to 10.64 
threshold: 
>-1.5: tolerated 
≤-1.5: damaging 
 

23033316 
23620363 

24980617 
 

https://fengbj-laboratory.org/BayesDel/BayesDel.html
https://fengbj-laboratory.org/BayesDel/BayesDel.html
https://fengbj-laboratory.org/BayesDel/BayesDel.html
https://bio.tools/
https://www.ncbi.nlm.nih.gov/pubmed/28498993
http://www.liulab.science/metarnn.html
http://www.liulab.science/metarnn.html
https://doi.org/10.1101/2021.04.09.438706
https://doi.org/10.1101/2021.04.09.438706
https://doi.org/10.1101/2021.04.09.438706
https://doi.org/10.1101/2021.04.09.438706
https://www.ncbi.nlm.nih.gov/pubmed/28149325
https://doi.org/10.1101/805051
https://doi.org/10.1101/805051
https://doi.org/10.1101/805051
https://sites.google.com/site/revelgenomics/about?authuser=0
https://sites.google.com/site/revelgenomics/about?authuser=0
https://sites.google.com/site/revelgenomics/about?authuser=0
http://www.columbia.edu/~ii2135/eigen.html
http://www.columbia.edu/~ii2135/eigen.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731313/
http://fathmm.biocompute.org.uk/
http://fathmm.biocompute.org.uk/
https://pubmed.ncbi.nlm.nih.gov/23033316/
https://pubmed.ncbi.nlm.nih.gov/23620363/
https://pubmed.ncbi.nlm.nih.gov/24980617/
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FATHMM- 

MKL 
Fathmm- multiple kernel 

learning 

http://fathmm.biocompute
.org.uk/fathmmMKL.htm 

score: 0 to 1 
threshold:  
> 0.5: deleterious 
≥ 0.7: pathogenic 
≤ 0.5: neutral 
 

25583119 

FATHMM- XF 

Fathmm with extended 

features 

http://fathmm.biocompute
.org.uk/fathmm-xf/ 

score: 0 to 1 
threshold:  
≥0.5: deleterious 
<0.5: neutral/benign 
 

28968714 
 

LIST- S2 https://precomputed.list-
s2.msl.ubc.ca/ 

score: 0 to 1 
threshold:  
<0.85: benign 
≥0.85: deleterious 
 

32352516 

LRT 

Likelyhood ratio test 

No results found score: 0 to 1 
threshold:  
<0.001: deleterious 
≥0.001: neutral 
 

19602639 

Mutation 

Assessor 

http://mutationassessor.or
g/r3/ 

score: -5.135 to 6.49 
threshold: 
<1: neutral (benign) 
≥1: low (pathogenic) 
≥2: medium (pathogenic) 
≥3.5: high (pathogenic) 
 

17976239 

MutationTaster2 https://www.genecascade.
org/MutationTaster2021/ 
 

score: 0 to 1 (probability that the 
prediction is true) 
threshold:  
1: prediction is true 
<0.5: MT classifier comes to a 
different conclusion 
disease causing – polymorphism  
('automatic' is added when the 
effect of the variant has already 
been clarified) 
 

24681721 

 
https://doi.o
rg/10.1093/
nar/gkab26
6 
 
 
 
 

PrimateAl https://github.com/Illumin
a/PrimateAI 

score: 0 to 1 
threshold: 
<0.8: tolerated 
≥0.8: damaging 
 

30038395 

PROVEAN 

Protein variation effect 

analyzer 

http://provean.jcvi.org/ind
ex.php 

score: -14 to 14 
threshold:  
≤ predefined threshold: deleterious 
(-2) 
> predefined threshold: neutral (-2) 
 

25851949 
23056405 

http://fathmm.biocompute.org.uk/fathmmMKL.htm
http://fathmm.biocompute.org.uk/fathmmMKL.htm
https://pubmed.ncbi.nlm.nih.gov/25583119/
http://fathmm.biocompute.org.uk/fathmm-xf/
http://fathmm.biocompute.org.uk/fathmm-xf/
https://pubmed.ncbi.nlm.nih.gov/28968714/
https://precomputed.list-s2.msl.ubc.ca/
https://precomputed.list-s2.msl.ubc.ca/
https://academic.oup.com/nar/article/48/W1/W154/5827198
https://www.genecascade.org/MutationTaster2021/
https://www.genecascade.org/MutationTaster2021/
https://pubmed.ncbi.nlm.nih.gov/24681721/
https://doi.org/10.1093/nar/gkab266
https://doi.org/10.1093/nar/gkab266
https://doi.org/10.1093/nar/gkab266
https://doi.org/10.1093/nar/gkab266
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SIFT  

Sorting intolerant from 

tolerant 

 

SIFT4G 
Sorting intolerant from 

tolerant for genomes 

https://sift.bii.a-
star.edu.sg/ 
 
https://sift.bii.a-
star.edu.sg/sift4g/ 
 
 

score: 0 to 1 
threshold:  
≤0.05: deleterious 
>0.05: tolerated 
 

22689647 
11337480 
19561590 

11875032 
12824425 
26633127  

26633127  

 
 

b. Second (minor) part: Pilot study 

 

In the second (minor) part of the study, the congruency between classification 

determined via careful literature based single variant analysis and classifications made by in 

silico prediction tools was investigated through observing the accuracy and MCC of each in 

silico tool. 

Therefore, 58 VUS, out of which 32 were classified as pathogenic and 26 classified as 

benign by the department of pathology via careful literature based single variant analysis, were 

analyzed by 20 in silico databases (Figure 5, Figure 6).  

 

 

Figure 5. Benign genetic alterations classified by the department of pathology (n =26) 

 

Benign genetic alterations

MSH2 PALB2 TSC2 RICTOR RAD51B NOTCH3

ATM PTCH1 RAD50 TERT FANCA MYC

RAD51C KDR SLX4 SMO SMO

https://sift.bii.a-star.edu.sg/
https://sift.bii.a-star.edu.sg/
https://sift.bii.a-star.edu.sg/sift4g/
https://sift.bii.a-star.edu.sg/sift4g/
https://pubmed.ncbi.nlm.nih.gov/22689647/
https://pubmed.ncbi.nlm.nih.gov/11337480/
https://pubmed.ncbi.nlm.nih.gov/11875032/
https://pubmed.ncbi.nlm.nih.gov/12824425/
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Figure 6. Pathogenic genetic alterations classified by the department of pathology (n = 32) 

 

The results of the in silico databases regarding accuracy and MCC are shown in Table 

3.  

 

Table 3 Evaluation of predictions of in silico databases 

In silico database Accuracy (%) MCC score 

DEOGEN 53,4 0,14 
MetaLR 53,4 0,17 
MetaRNN 60,3 0,39 
MetaSVM 51,7 0,12 
MutationTaster 58,6 0,15 
REVEL 55,2 0,23 
BayesDel addAF 65,5 0,46 
BayesDel noAF 58,6 0,23 
EIGEN 50,0 0,01 
EIGEN PC 55,2 0,09 
FATHMM 51,7 0,02 
FATHMM-MKL 55,2 0,06 
FATHMM-XF 51,7 0,02 
LIST-S2 56,9 0,13 
LRT 55,2 0,08 
Mutation Assessor 51,7 0,03 
PrimateAl 51,7 0,19 
Provean 53,4 0,10 
Sift 55,2 0,14 
Sift4G 56,9 0,20 

The highest value of each category is highlighted in green 
The lowest value of each category is highlighted in red 

Pathogenic genetic alterations

KRAS ATM CDK12 FANCA NOTCH1 ATR

STAT3 SLX4 NF1 FANCD2 ATR POLE

BRCA1 MET TSC1 KDR ERCC2 CREBBP

BRCA2 TSC2 CDK12 RNF43 DDR2 MAP2K4
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The results regarding the accuracy of in silico databases ranged from 50,0%% to 65,5%. 

The best result was shown by BayesDel addAF with 65,5%. EIGEN showed the lowest result 

with an accuracy of 50% (Figure 7). 

 

 

Figure 7. Accuracy of in silico databases 

 

Based on the MCC score, BayesDel addAF scored highest with 0.46. The lowest result 

was shown by EIGEN with 0.01. Every in silico database stayed below the cutoff value of 0,5 

for acceptable performance (Figure 8). 
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Figure 8. MCC score of in silico databases
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5. DISCUSSION 
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Bioinformatics is becoming a growing field in medicine, especially important for 

personalized medicine. In this context, in silico prediction tools were developed to predict the 

effects of genetic alterations (21). The possibility of predicting the effects of unknown genetic 

alterations could also be of great use for the molecular oncology of the department of pathology 

at the medical center in Coburg, regarding the classification of genomic alterations in 

oncological samples.   

 

The first (major) part of this work was concentrated on the identification and evaluation 

of the most important in silico tools, that are commonly used by VarSome. VarSome is the 

meta-database, that is routinely used by pathologists at the medical center Coburg.  

20 in silico tools were identified, that were evaluated regarding the basic principle of 

function, classification output, including scores and thresholds, as well as web-link and PMID 

number. This information (summarized in Table 1 and Table 2) enables pathologists from the 

molecular oncology of the department of pathology at the medical center Coburg to obtain a 

greater and deeper understanding of in silico databases and by this, improve the work with these 

prediction tools. Also, a possibility for quick further research is given by following the web link 

and PMID number for each in silico database.  

The evaluation of additional in silico databases can be investigated in further research. 

 

The second (minor) part of this work observed the congruity between classifications of 

genomic alterations in oncological samples determined by the department of pathology via 

careful literature-based single variant analysis and the classifications predicted by in silico 

tools. 32 VUS, that were classified as pathogenic and 26 VUS, that were classified as benign, 

by the department of pathology via careful literature-based single variant analysis, were used 

in this study. The evaluation of the congruity between the classifications made by the pathology 

department and the in silico databases was accomplished by studying the accuracy and MCC 

of each prediction tool.  

 The results of this study showed that none of the in silico databases reached the 

acceptable value of 0,5 in the MCC score (equivalent to >75% accuracy).  This was also 

reflected in the accuracy, that only showed a range of 50% to 65,5%. These results contrast 

with a study conducted by Ernst et al. In this study an accuracy of 92% could be reached (42). 

This discrepancy can be explained by different limitations in our study.  

Firstly, the system of classifying VUS by the department of pathology could be biased 

at different levels. This could lead to prediction results of in silico databases, that are falsely 
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classified as false negative/positive, which also has a negative influence on the overall 

performance of in silico tools. Secondly, only VUS were included in our study. However, in 

silico databases can reach better results, when they are tested on a higher collective, without the 

exclusion of truly positive/negative variants. This was also shown in the study conducted by 

Leong et al., that included in total 283 pathogenic and 29 benign gene variants in their study 

and could reach accuracies of >90% (24).  

The findings of our study are relevant for gaining experience and knowledge about the 

use of in silico databases at the molecular oncology of the department of pathology, regarding 

the classification of genomic alterations in oncological samples. As a consequence of the non-

congruent results of our study, the analyzing strategy of variant classification by in silico tools 

should be rethought. In silico tools cannot replace the literature-based single variant analysis of 

genomic alterations, yet. 

Improvement can be achieved by checking the way of classifying genomic alterations 

in the department of pathology. Moreover, a larger dataset of genomic alterations, in which 

known benign/pathogenic variants are included, should be used in further studies. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

6. CONCLUSION 
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In conclusion, the results of the first (major) part of this work give the opportunity, by 

identifying and evaluating the most important in silico databases commonly used by VarSome, 

to extend the interpretation and validation of in silico databases, that are frequently used at the 

molecular oncology of the department of pathology at the medical center Coburg. 

 

The results of the second (minor) part, that investigated the congruency between 

classifications established through careful literature-based single variant analysis by the 

department of pathology and the classifications made by in silico predictions tools are 

indicative, but low in congruency. The results of the pilot study have contributed to get a feeling 

for the reliability of in silico databases. However, the literature-based single variant analysis 

cannot be replaced by predictions of in silico databases, yet.  
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Objectives: The aim of the first (major) part of this study was to identify and evaluate the most 

important in silico databases, that are commonly used by VarSome, regarding basic principles 

of function, classification output (scores and thresholds), web link and PMID number. The 

second (minor) aim of this study was to investigate in a pilot study, how well the classifications 

of yet unidentified genomic alterations in oncological samples, predicted by in silico databases, 

are congruent with the classifications determined via careful literature-based single variant 

analysis by the molecular oncology of the department of pathology at the medical center in 

Coburg.  

 

Materials and methods: In the first (major) part of this study, 92 VUS (variants of unknown 

significance), were entered into VarSome and the most important ones were identified. The 

results were clearly presented in the form of two tables. The second (minor) part of this work 

was conducted in form of a pilot study. 58 genetic variants were entered into VarSome for 

prediction. The predictive results (benign/pathogenic) were compared to the classifications 

determined by the department of pathology. Accuracy and MCC score were determined for 

each in silico database. A MCC score of 0.5 or higher was set as the threshold for acceptability, 

which is equivalent to an accuracy of >75%. 

 

Results: 20 in silico databases were identified as the most important prediction tools commonly 

used by VarSome (BayesDel addAF, BayesDel noAF, DEOGEN2, MetaLR, MetaRNN, 

MetaSVM, REVEL, EIGEN PC, FATHMM, FATHMM-MKL, FATHMM-XF, LIST-S2, 

LRT, Mutation Assessor, MutationTaster2, PrimateAl, PROVEAN, SIFT, SIFT 4G). The 

classification output (scores, thresholds), assigned to each tool, gives the possibility for a deeper 

understanding of predictive results. Further research can be quickly achieved by following the 

web link or PMID number determined for each in silico database. In the pilot study, the testing 

of congruency was indicative, but remained low in congruency. This was reflected in an MCC 

score, that remained overall below the acceptability value of 0.5.  

 

 Conclusion: The results of the first (major) part of this work enable pathologists to extend the 

knowledge about interpreting and validating in silico databases, that are frequently used at the 

molecular oncology of the department of pathology at the medical center Coburg. The results 

of the second (minor) part, the pilot study, have contributed to get a feeling for the reliability 

of in silico databases. However, careful literature-based single variant analysis cannot be 

replaced by predictions of in silico databases, yet.  
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PROCJENA BAZA PODATAKA IN SILICO ZA KLASIFIKACIJU GENOMSKIH 

PROMJENA U ONKOLOŠKIM UZORCIMA 

 

Ciljevi: Cilj prvog (glavnog) dijela ove studije bio je identificirati i evaluirati najvažnije in 

silico baze podataka, koje VarSome obično koristi, u vezi s osnovnim načelima funkcioniranja, 

izlazom klasifikacije (rezultati i pragovi), web poveznicom i PMID brojem . Drugi (manji) cilj 

ove studije bio je u pilot studiji istražiti koliko su klasifikacije još neidentificiranih genomskih 

promjena u onkološkim uzorcima, predviđene bazama podataka in silico, u skladu s 

klasifikacijama utvrđenim pažljivom analizom jedne varijante temeljenom na literaturi. od 

strane molekularne onkologije odjela patologije u medicinskom centru u Coburgu. 

 

Materijali i metode: U prvom (velikom) dijelu ovog istraživanja u VarSome su unesene 92 

VUS (varijante nepoznatog značaja) te su identificirane one najvažnije. Rezultati su pregledno 

prikazani u obliku dvije tablice. Drugi (manji) dio ovog rada proveden je u obliku pilot studije. 

58 genetskih varijanti uneseno je u VarSome za predviđanje. Prediktivni rezultati 

(benigni/patogeni) uspoređeni su s klasifikacijama koje je odredio odjel patologije. Točnost i 

MCC rezultat određeni su za svaku in silico bazu podataka. MCC rezultat od 0,5 ili viši 

postavljen je kao prag prihvatljivosti, što je ekvivalentno točnosti od >75%. 

 

Rezultati: 20 baza podataka in silico identificirano je kao najvažniji alati za predviđanje koje 

VarSome obično koristi (BayesDel addAF, BayesDel noAF, DEOGEN2, MetalLR, MetaRNN, 

MetaSVM, REVEL, EIGEN PC, FATHMM, FATHMM-MKL, FATHMM-XF, LIST-S2, 

LRT, Mutation Assessor, MutationTaster2, PrimateAl, PROVEAN, SIFT, SIFT 4G). Izlaz 

klasifikacije (rezultati, pragovi), dodijeljen svakom alatu, daje mogućnost za dublje 

razumijevanje prediktivnih rezultata. Daljnje istraživanje može se brzo postići praćenjem web 

poveznice ili PMID broja određenog za svaku in silico bazu podataka. U pilot studiji, ispitivanje 

kongruencije bilo je indikativno, ali je ostalo niske kongruencije. To se odrazilo na MCC 

ocjenu, koja je u cjelini ostala ispod vrijednosti prihvatljivosti od 0,5. 

 

Zaključci: Rezultati prvog (velikog) dijela ovog rada omogućuju patolozima da prošire znanje 

o interpretaciji i validaciji in silico baza podataka, koje se često koriste na molekularnoj 

onkologiji odjela patologije medicinskog centra Coburg. Rezultati drugog (manjeg) dijela, pilot 

studije, pridonijeli su stjecanju osjećaja pouzdanosti in silico baza podataka. Međutim, pažljiva 
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analiza pojedinačnih varijanti temeljena na literaturi još se ne može zamijeniti predviđanjima 

baza podataka in silico. 
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