Procjena pouzdanosti dvodimenzionalne shear wave elastografije u stvarnom vremenu u dijagnostici ciroze jetre

Šego, Filip

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, School of Medicine / Sveučilište u Splitu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:171:725276

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-14

MEFST Repository
SVEUČILIŠTE U SPLITU

MEDICINSKI FAKULTET

Filip Šego

PROCJENA POUZDANOSTI DVODIMENZIONALNE SHEAR WAVE ELASTOGRAFIJE U STVARNOM VREMENOM U DIJAGNOSTICI CIROZE JETRE

Diplomski rad

Akademska godina: 2017/2018

Mentor:

doc. dr. sc. Željko Puljiz, dr. med.

Split, srpanj 2018.
Filip Šego

PROCJENA POUZDANOSTI DVODIMENZIONALNE SHEAR WAVE ELASTOGRAFIJE U STVARNOM VREMENOU DIJAGNOSTICI CIROZE JETRE

Diplomski rad

Akademska godina: 2017/2018

Mentor:

doc. dr. sc. Željko Puljiz, dr. med.

Split, srpanj 2018.
SADRŽAJ

1. UVOD ..1
 1.1. Anatomija jetre ...2
 1.2. Histologija jetre ..3
 1.3. Fiziologija jetre ...4
 1.4. Patologija jetre ...4
 1.5. Ciroza ...6
 1.6. Dijagnostika jetrenih bolesti ..12
 1.7. Ultrazvuk ..16
 1.8. Shear wave elastografija ...18

2. CILJ ISTRAŽIVANJA ..20

3. MATERIJAL I METODE ...22
 3.1. Ispitanici ..23
 3.2. Mjerenje shear wave elastografije ...23
 3.3. Statistička obrada podataka ...24

4. REZULTATI ..25

5. RASPRAVA ...31

6. ZAKLJUČCI ..34

7. LITERATURA ...36

8. SAŽETAK ...39

9. SUMMARY ..41

10. ŽIVOTOPIS ..43
Hvala momu mentoru doc. dr. sc. Željku Puljizu, dr. med. na povjerenju, trudu i pomoći pri odabiru ovog diplomskog rada. Zahvaljujem i dr. Antoniju Meštroviću, na velikoj pomoći pri izradi ovog diplomskog rada. Hvala i svim zaposlenicima Zavoda za gastroenterologiju KBC „Firule“ koji su mi pomogli u stvaranju ovog diplomskog rada.

Velika hvala mojoj obitelji na podršci, ohrabrivanju i razumijevanju tijekom moga studija i rada na diplomskom radu.
1. UVOD
1.1. Anatomija jetre

Jetra je najveći organ u ljudskom tijelu. Nalazi se u gornjoj desnoj četvrti trbušne šupljine, ispod desne hemidiaphragme. Štite je rebra, a njegov položaj održava ligamentum falciforme koji je nastavak peritoneuma. S donjeg ruba srpolikog ligamenta pruža se ligamentum venosum u kojem se nalazi obliterirana umbilikalna vena (ductus venosus) koja je bitna u pretporođajnom životu i portosistemskom kolateralnom krvotoku. Kranijalni dio jetre je konveksna površina koja se spaja na dijafragmu fibroareolarnim tkivom i koja nema ligamenata ni peritoneuma. Sprijeda i straga tog područja postoje koronarni ligamenti koji su dio dijafragmalnog djela peritoneuma i koji drže jetru na njezinu mjestu. Jetra svojom stražnjom stranom je u dodiru s donjom šupljom venom putem ligamenta. Ti se kavalni ligamenti sastojte od dijelova Glissonove čahure. Glissonova čahura je sloj vezivnog tkiva koji oblaže jetru, a. hepaticu, v. portae i žučne vodove unutar jetre. Također, od Glissonove čahure pružaju se tračci vezivnog tkiva koji dijele jetru u 8 segmenta. Ti segmenti se klasificiraju po Couinadovom sustavu. Jetra je u bliskom dodiru s brojnim organima. Želudac se nalazi blizu lijevog jetrenog režnja i spaja se gastrohepatičnim ligamentom na ligamentum venosum. Ligamentum gastrohepaticum sadržava hepačnu granu n. vagusa i nekada prisutnu aberantnu lijevu a. hepaticu. Desna fleksura debelog crijeva naliježe na jetru s njene prednje strane. Dvanaesnik i portalne strukture su u kontaktu s jetrom putem hepatoduodenalnom ligamenta (ligamentum hepatoduodenale) i porte hepatis. Unutar nje se nalaze ductus choledochus, a. hepatica propria i v. portae hepatis. Žučnjak se nalazi u neposrednoj blizini stražnje strane jetre. Spaja se na ductus choledochus sa ductusom cysticusom. A. cystica koja opskrbljuje žučnjak je ogranak desne jetrene arterije. Desna nadbubrežna žlijezda leži ispod desnog jetrenog režnja (1).

Živčana inervacija jetre obuhvaća simpatički i parasimpatički dio, a potječe od celijačnog pleksusa, donjih torakalnih ganglija, desnog freničnog živca i vagusa. Jetra sadrži duboku i površinsku mrežu limfnih žila kojima se odvodi limfa. Veći dio limfnog toka odlazi u dubinskom mrežom prema lateralnim limfnim čvorovima hepatnim limfnim žilama i, dalje, prema hilusu portalnim limfnim žilama. Površinska mreža se nalazi unutar Glissonove čahure i skuplja se u frenične i hilarne limfnine čvorove (1).

Zahtjev jetre za krvnom opskrbom je jako velik i na njega otpada i do 25% ukupnog volumena krvi. Dvostruka krvna opskrba dolazi od hepatalne arterije i portalne vene. Većina krvi dolazi portalnom venom (70%-75%), a samo 25%-30% hepatalnom arterijom. Ta se dva

Sustav žučnih vodova odgovaran je za sakupljanje i transport žuči do duodenuma. Svi intrahepatalni vodovi konvergiraju i naposljetku prave *ductus hepaticus communis*. Daljnjim tijekom on se spaja sa *ductusom cysticusom* i zajedno prave *ductus choledochus*. On se u gušterači spaja sa *ductusom pancreaticus majorom* da bi se nakon toga otvarali u duodenum kroz *papillu Vateri* (1).

1.2. Histologija jetre

Histološki, svaki režanj jetre je sastavljen od mnogo malih jetrenih režnjića. Oni su heksagonalnog oblika i sastoje se od hepatocita poredanih u krug oko središnje vene. Ta središnja vena odvodi krv prema sistemskom krvotoku. Važne strukture su Kiernanovi portalni prostori, koji sadrže ogranak hepatalne arterije, ogranak portalne vene, žučni vod, limfne žile i ogranak živca vagusa i smješteni su na kutovima režnjića. Žučni vodovi obloženi su kubičnim epitelom. Između hepatocita se nalaze jetrene sinusoide koje su kapilarni prostori kroz koje krv teče od hepatalnih arterija i vena prema središnjoj veni. Sinusoide su obložene endotelnim stanicama. Njih od hepatocita dijeli subendotelni ili Disseov prostor. Osim hepatocita, u jetri se nalaze i limfociti, Kupfferove stanice i Itoove stanice. Kupfferove stanice su specijalizirani makrofagi zaduženi za razgradnju starih eritrocita i hemoglobina, izlučivanje bjelančevina i razgradnju bakterija. U Disseovom prostoru nalaze se Itoove stanice koje pohranjuju masti i vitamin A. One se aktiviraju pri potrebi reparacije oštećenja jetre. Pri alkoholnom oštećenju jetre upravo su Kupfferove stanice odgovorne za prekomjernu produkciju citokina i superoksidna koji potiču stelatne (Itoove) stanice na stvaranje kolagena i posljedičnu fibrozu (2).
1.3. Fiziologija jetre

1.4. Patologija jetre

Patološke se promjene jetre mogu očitovati na razne načine. Među reverzibilne promjene spada vakuolarna ili hidropična pretvorba kada se hepatociti nabubre i napune se
1.5. Ciroza

Ciroza je četvrti najčešći uzrok smrti u Republici Hrvatskoj i, trenutno, najčešći uzrok te bolesti je pretjerano konzumiranje alkohola i virusni hepatitisi B i C. Glavni patogenetski proces u cirozi je nekroza hepatocita i fibroza koji prati tipični slijed: nekroza stanica – upalna infiltracija – fibroza – ciroza – portalna hipertenzija – hepatocelularni karcinom. U cirozi dolazi do smanjenja sintetske funkcije jetre (hypoalbuminemija, edemi zbog smanjenog osmotskog tlaka krvi, hemoragijska dijateza), poremećaja izlučivanja žuči i posljedičnom žuticom, poremećaja kataboličke i detoksikacijske funkcije što rezultira jetrenom encefalopatijom, portalne hipertenzije i njenih pridruženih komplikacija, hepatorenalnog sindroma i hepatopulmonalnog sindroma. Hepatorenalni sindrom je sindrom zatajenja bubrežne funkcije u bolesnika s uznemiravanjima bolesću jetre i portalnom hipertenzijom. Naime, stvaranje ascitesa zbog hipoalbuminemije i portalne hipertenzije uzrokuje hipoperfuziju bubrega na što on potiče lučenje renina, aldosterona i antidiuretskog hormona (ADH). To dovodi do retencije vode i natrijevog klorida. Sve te promjene potenciraju jedna drugu, stvara se začaran krug i, konačno, postepeno smanjenje funkcije bubrežnog kanala i posljedična žutica. Sve te promjene potenciraju jedna drugu, stvara se začaran krug i, konačno, postepeno smanjenje funkcije bubrežnog kanala i posljedična žutica.

gubitkom teka i sličnim simptomima. Katkada je prisutna žutica. Za potvrdu dijagnoze mora se raditi biopsija jetre čime se dobiju imunohistokemijski i karakteristični biopsijski nalazi (4,5,6).

Najvažnije imunosno posredovane jetrene bolesti su primarna bilijarna ciroza, primarni sklerozirajući kolangitis i autoimuni hepatitis. Primarna bilijarna ciroza (PBC) je kronična autoimuna progresivna kolestatska bolest jetre u kojoj dolazi do upalnog razaranja intrahepatičkih žučnih vodova. Bolest je uzrokom 20% ciroza s incidencijom 0.4-1.5 na 100 000 stanovnika. Javlja se češće kod žena srednje životne dobi. U prilog autoimunosnoj podlozi bolesti ide u prilog postojanje drugih autoimunih bolesti kod pacijenata i nalaz antimitohondrijskih antitijela (AMA). Dolazi do infiltracije limfocita T u jetreni parenhim i posljedičnog razaranja malih i srednjih žučnih kanalića. To prati progresivna fibroza portalnih prostora, a posljedični zastoj žuči dovodi do oštećenja i nekroze jetrenih stanica. Konačno se razvija bilijarna ciroza. Bolest započinje asimptomatskim razdobljem. Symptomi počinju svrbežom i žuticom. Dolazi do karakterističnog porasta jetrenih enzima (AST, ALT, GGT, AF), bilirubina i kolesterol. Kolesterol se počinje odlagati u koži gdje da fagocitiraju makrofagi. Te nakupine makrofaga ispunjenih kolesterolom u obliku svijetlo žutih papula nazivaju se ksantomima (xanthoma). Primarni sklerozirajući kolangitis (PSC) progresivna je kolestatska jetrena bolest koju obilježava kronična sklerozirajuća upala intrahepatičnih i ekstrahepatičnih žučnih vodova. Češće obolijevaju muškarci, a prosječna dob postavljanja dijagnoze je 40. godina. Vjeruje se da je autoimune etiologije zbog često prisutnih drugih autoimunih oboljenja, ali etiologija bolesti nije dokazana. Za tu su bolest karakteristične promjene i intrahepatičnih i ekstrahepatičnih žučnih vodova. U jetri se nalaze infiltrati limfocita oko žučnih vodova i fibroza. Upravo neprestano umnožavanje fibroze dovodi do opstrukcije otjecanja žuči i razvoja sekundarne bilijarne ciroze. Tipična slika PSC-a su segmentalna suženja velikih ekstrahepatičnih žučnih vodova. Na kontrastnoj rentgenskoj snimci vidi se tipična slika „krunice“. Klinički, bolest počinje osjećajem umora, bolovima u trbuhi, žuticom i izrazito povećanim alkalnom fosfatazom (AF) i bilirubinom. U bolesnika se mogu naći brojna antitijela, kao što su ANA, SMA, RF, p-ANCA. U krajnjoj fazi bolesti dolazi do razvoja ciroze praćene portalnom hipertenzijom i encefalopatijom. Također, oboljeli imaju povećan rizik razvoja kolangiokarcinoma. Autoimuni hepatitis (AH) je kronični recidivirajući hepatitis nepoznate etiologije praćen stalnom upalom, nekrozom, fibrozom i velikom sklonošću prelaska u cirozu. Jako je rijetka bolest s incidencijom 1.9 na 100 000 stanovnika i pretežno u žena. Pretpostavlja se da dolazi do nereguliranog aktiviranja limfocita
T i njihovog lučenja interferona gama (IFN-Ɣ) koji djeluje direktno hepatotoksično. Također, dolazi i do pojave hipergamaglobulinemije i pojave autoprotutijela. Bolest je često prisutna uz druge autoimune bolesti, što doprinosi njenoj autoimunoj etiologiji. Postoje dva tipa. Tip 1 je češće dijagnosticiran, češće obilježavaju žene i kod njega su prisutna autoantitijela (ANA, SMA, AAA). Tip 2 se pojavljuje u djece i očituje se prisutnošću autoantitijela na mikrosome jetre i bubrega (anti-LKM). Autoimuni hepatitis pokazuje dugu asimptomatsku fazu, a simptomatski se počinje prezentirati nespecifičnim simptomima, primjerice umor, letargija, slabost, mučnina, žutica, anoreksija, bol ispod desnog rebrenog luka, svrbež. Mora se razlučiti od virusnog hepatitisera serološkim testovima i prisutnošću autoantitijela. Često napreduje u cirozu s pojavom ascitesa, perifernih edema, hepatosplenomegalije i encefalopatije (4,5,6).

Ciroze jetre s genetskim uzrokom etiološki obuhvaćaju hemokromatozu, Wilsonovu bolest, manjak α1-antitripsina, cističnu fibrozu i galaktozemiju. Hemokromatoza je poremećaj kod kojega dolazi do nakupljanja željeza u parenhimalnim stanicama organa s posljedičnim poremećajem njihove funkcije. Dijeli se na primarnu ili hereditarnu (tip 1) i sekundarnu koja nastaje kao posljedica bolesti i stanja kod kojih se u cirkulaciji nade prevelika količina željeza. Mutirani gen u tip 1 hemokromatozi je HFE (engl. High Fe – visoko željezo) i nalazi se na 6. kromosomu. Taj gen kodira protein koji regulira apsorpciju željeza u duodenumu i njegova mutacija uzrokuje preveliku apsorpciju željeza. Klinički znakovi ove bolesti se razviju u 0.6% populacije bijelaca, učestalije u muškaraca. Sekundarna hemokromatoza je dosta češća od primarne i najčešće nastaje zbog velike količine transfuzija krvi, hemolitičke anemije i velikog unosa željeza zbog terapijskih potreba. Nakon 20-30 godina, kada ukupna količina željeza premaši 20 grama, počinju se razvijati simptomi bolesti. Sama bolest je posljedica izravnog toksičnog djelovanja željeza na tkiva. Glavna morfološka značajka je odlaganja željeza u obliku hemosiderina u tkivima. Klinički, u više od 90% bolesnika nalaze se simptomi ciroze jetre, hiperpigmentacija kože, dijabetes i srčane aritmije. Dijagnoza se postavlja na temelju povećane koncentracije željeza i feritina (protein na kojeg je vezano željezo u tkivima) u krvi te povećana zasićenja transferinom (transportni protein željeza). Dijagnoza se može potvrditi i genetskim testiranjem. Wilsonova bolest je nasljedni poremećaj metabolizma bakra u kojemu nastupa oštećenje jetre i središnjeg živčanog sustava zbog odlaganja prekomjerne količine bakra u tkiva. U toj bolesti postoji mutacija gena ATP7B na kromosomu 13, a taj gen je odgovoran za sintezu enzima ATP-aze koja posreduje transmembranski prijenos bakra iz jetrenih stanica u žučne vodove. Osim nemogućnosti izlučivanja bakra putem žuči, nemoguća je i veza bakra i ceruloplazmina (protein na kojeg se

Oštećenje jetre uzrokovano lijekovima (ijatrogeno) i toksinima nastaju zbog izravnog toksičkog djelovanja štetnog agensa, zbog stvaranja aktivnih toksičnih metabolita tijekom razgradnje u jetri ili je riječ o imunosno posredovanom oštećenju. Spomenuto oštećenje može biti predvidivo i nepredvidivo. U predvidivom oštećenju znamo da određeni spoj uzrokuje nekrozjetrenih stanica, oštećenje nastupa kratko nakon unosa spoja, opseg oštećenja je razmjeran dozi i to se može reproducirati u eksperimentalnim modelima. U tu se skupinu ubrajaju fosfor, tetraklor-ugljik (CCl₄) i paracetamol. Nepredvidivo oštećenje nastaje kod malog broja izloženih osoba i vjerojatno je riječ o sklonosti određene osobe da pokrene hipsenzitivnu imunoreakciju na neki spoj. Oštećenje ne nastaje u određenom vremenskom periodu i nije ovisno o uzetoj dozi lijeka ili toksina. Primjeri lijekova su anestetik halotan, psihofarmak klorpromazin, antituberkulotik izonijazid, sulfonamidi, fenilbutazol itd. U 25% slučajeva očituje se fulminantnim hepatitism s masivnom jetrenom nekrozom, a u samo 5% slučajeva žuticom. Velik broj slučajeva se može prezentirati kliničkom slikom sličnom akutnom virusnom hepatitisu. Hepatitis nastao ovim putem može biti vrlo aktivan i prijeći u cirozu jetre (4,5,6).
1.6. Dijagnostika jetrenih bolesti

Laboratorijske pretrage jetre obuhvaćaju biokemijske pretrage i pretrage za etiopatogenetsko razlikovanje bolesti. Skupina biokemijskih pretraga sadrži pokazatelje oštećenja i nekroze, pokazatelje kolestaze i pokazatelje sintetske i metaboličke funkcije, a bitni su jer nam omogućavaju prepoznavanje promjene jetrene funkcije prije kliničke manifestacije bolesti. Pokazatelji hepatocelularnog oštećenja i nekroze su enzimi aspartat-aminotransferaza (AST), koja se pretežno nalazi u citoplazmi, i alanin-aminotransferaza (ALT), koja je podrijetlom iz mitohondrija i citoplazme. Oba su enzima nespecifična za jetru, ali su precizni i osjetljivi indikatori oštećenja jetre. Oni se otpuštaju u krvotok pri oštećenju i raspadu jetrenih stanica. Njihov bi omjer u nalazima trebao biti 1:1, ali postoje primjeri kada nije tako, primjerice, omjer veći od 2 upućuje na alkoholnu bolest jetre ili Wilsonovu bolest. Umjerena hepatalna upala ili nekroza, primjerice kod steatoze, intoksikacije alkoholom, kroničnog virusnog hepatitisa, ciroze jetre, kolestaze, neoplazme i hemokromatoze obično izaziva blagi dugotrajni porast aminotransferaza (<250 ij.) Bilo koje stanje jetrenog oštećenja može izazvati umjereni porast tih enzima na vrijednosti od 250 do 1000 ij. U slučaju akutne bilijarnje opstrukcije ili alkoholnog hepatitisa pogoršanog istodobnim virusnim hepatitismom moguć je porast enzima preko 1000 ij. Toksična oštećenja jetre lijekovima te akutni virusni hepatitisi najčešće su razlog vrlo visokog porasta aminotransferaza preko 2000 ij. Visina rasta nema nikakvu prognostičku vrijednost niti time možemo odrediti sigurni uzrok oštećenja jetre stoga su potrebne daljnje pretrage (5,6).

Pokazatelji kolestaze su bilirubin, alkalna fosfataza (ALP), gama-glutamiltransferaza (GGT) i 5-nukleotidaza (5-NT). Bilirubin je razgradni produkt hemoglobina i nastaje razgradnjom eritrocita i proteina koji sadržavaju hem. Prije prolaska kroz jetru on se nalazi u nekonjugiranom obliku. Jetra je odgovorna za njegovu konjugaciju čime bilirubin postaje topljiv u vodi i bubrezi ga mogu izlučiti. Parenhimne bolesti jetre ili opstrukcije u otjecanju žuči uzrok su konjugirane hiperbilirubinemije. Porast bilirubina u krvi je prognostički loš znak kod alkoholnog hepatitisa, PBC i zatajenja jetre. Nije pouzdano mjerenje udjela konjugiranog bilirubina u razlučivanju bilijarne opstrukcije i parenhimnog oštećenja jetre. Alkalna fosfataza (ALP) je enzim koji se nalazi u jetri, kostima, crijevima, bubreza i posteljici, ali ALP koju možemo detektirati u serumu najvećim dijelom se sastoji od koštanog i jetrenog izoenzima. Porast tog enzima može upućivati na mnoga stanja, ali značajan porast ukazuje na bilijarnu opstrukciju ili infiltraciju jetre tumorom. Gama-glutamiltransferaza (GGT) može se naći u jetri, bubreza, gušterači, srcu, mozgu i plućima, ali je također
osjetljiv i važan dijagnostički pokazatelj oštećenja epitelnih stanica intrahepatalnih žučnih vodova. Osobito je koristan za razlučivanje podrijetla povišene aktivnosti ALP. Aktivnost GGT najviše potiču alkohol i lijekovi. 5-nukleotidaza (5-NT) je membranski enzim koji se nalazi u mnogim tkivima, ali je njegovo povišenje gotovo isključivo povezano s jetrenim oštećenjem. U kolestazi je tipičan veći porast bilirubina i ALP u odnosu na AST i ALT. Istodobni porast bilirubina i ALP možemo naći i u alkoholnom i virusnom hepatitisu. Porast ALP praćen porastom GGT i 5-NT upućuje na jetreno podrijetlo ALP i tada je indicirano daljnja slikovna obrada jetre. Izolirani porast GGT može upućivati na abuzus alkohola ili uzimanje određenih lijekova (5,6).

Pretrage za etiopatogenetsko razlikovanje jetrenih bolesti su serumski imunoglobulini, specifični proteini, virusni antigeni i antitijela na antigene i autoantitijela. Serumski se imunoglobulini stvaraju u limfocitima B i povišeni su u većini kroničnih bolesti jetre. Hepatociti također stvaraju specifične proteine: transferin, feritin, ceruloplazmin i α₁-
antitripsin (AAT). Serumska koncentracija transferina i feritina je izražena u hemokromatozi. Fibronektin je glikoprotein čija je koncentracija snižena u bolestima jetre, što je loš prognostički znak. Povišene vrijednosti prokolinagen-III-peptida (PIIIP) nalaze se u bolestima sa stvaranjem fibroze i cirozi jetre. Virusni antigeni i antitijela na te antigene pomažu etiopatogenskom razlikovanju virusnih hepatitisa. Specifična autoantitijela određuju se u razlikovanju autoimunosnih bolesti jetre. Ona obuhvaćaju antimitohondrijsku antitijela (AMA), antinuklearna antitijela (ANA), antitijela na glatku muskulaturu (SMA), antitijela protiv mikrosoma jetre i bubrega (LKM) i perinuklearna antineutrofilna citoplazmatska antitijela (pANCA). Bitno je spomenuti i tumorske biljege, kao što su α₁-fetoprotein (AFP) koji se koristi u dijagnostici hepatocelularnog karcinoma (HCC) i karcinoembrijski antigen (CEA) koji je marker kolorektalnog karcinoma i služi za razlikovanje primarnih jetrenih tumora od presadnica (5,6).

U slikovnoj dijagnostici jetrenih bolesti važno je spomenuti ultrazuvučnu dijagnostiku (UZV), kompjutersku tomografiju (CT) i magnetnu rezonanciju (MR). Ultrazuvučni prikaz jetre ima ograničenu primjenu u difuznim bolestima jetre zbog nemogućnosti sigurnog razlikovanja patoloških promjena i zbog toga je potrebno tumačiti ultrazuvučni nalaz u kombinaciji s drugim dijagnostičkim testovima i metodama. Masne promjene i fibroza se jako teško razlikuju jer i masno tkivo i fibroza povećavaju ehogenost jetre. U cirozi je ultrazuvučni nalaz vrlo varijabilan zbog velike razlike u histološkom nalazu. Vrijednost ultrazvuka u žarišnim promjenama jetre je daleko veća. Ultrazuvkom vođena biopsija jetrenih lezija omogućuje histološku potvrdu dijagnoze. Pregled bolesnika CT-om i MR-om obično dolazi nakon izvođenja laboratorijskih testova i ultrazuvučnog pregleda i najčešće se koriste u dijagnostici žarišnih lezija jetre, najviše u prikazu tumorskih promjena, a puno manje za difuzne bolesti jetre (6).

Biopsija jetre, zlatni standard dijagnostike jetrenih promjena, omogućuje patohistološku i biokemijsku analizu uzorka jetrenog tkiva što u većini slučajeva omogućuje konačnu dijagnozu difuznih i žarišnih promjena u jetri. Provodi se u lokalnoj anesteziji, supkostalnim ili transpleuralnim pristupom. Morbiditet metode je jako nizak, a učestalost većih komplikacija je 0.3%. Nedostaci biopsije su invazivnost, bol, potencijalne komplikacije, loše uzorkovanje i cijena zahvata. Indikacije za biopsiju jetre su razjašnjenje uzroka hepatocelularnog oštećenja, kolestaze, hepatomegalije i splenomegalije i žarišnih promjena u jetri te sumnja na infiltrativnu bolest jetre. Kontraindikacije za zahvat su nesuradljivost bolesnika, poremećaji hemostaze, infekcije kože, septični kolangitis, tenzijski ascites, visoka
opstrukcija žučnih vodova i izraženi ikterus. Stupanj se fibroze jetre najčešće klasificira prema METAVIR klasifikaciji u 5 stupnjeva od F0 do F4 (Tablica 1.) (6).

<table>
<thead>
<tr>
<th>Stadij fibroze</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Nema fibroze</td>
</tr>
<tr>
<td>F1</td>
<td>Blaga fibroza – portalna fibroza bez stvaranja septa</td>
</tr>
<tr>
<td>F2</td>
<td>Umjerena fibroza – portalna fibroza s nekoliko septa</td>
</tr>
<tr>
<td>F3</td>
<td>Teška fibroza – mnogo septa bez ciroze</td>
</tr>
<tr>
<td>F4</td>
<td>Ciroza</td>
</tr>
</tbody>
</table>

Tablica 1. Stupnjevi fibroze prema METAVIR klasifikaciji.

Dijagnostički parametri ciroze jetre, kombinirani s podatcima iz anamneze, mogu se izraziti određenim zbirovima i time pokazati funkciju jetre (ALBI), težinu kronične jetrene bolesti (MELD) i odrediti prognozu kronične jetrene bolesti, poglavito ciroze (Child-Pugh). ALBI (albumin-bilirubin) zbir je koristan pokazatelj funkcije jetre koji se računa iz podataka o serumskom albuminu i ukupnom bilirubinu prema sljedećoj formuli:

$$ALBI = (\log_{10} x \text{bilirubin } \mu\text{mol/L} x 0.66) + (\text{albumin } \mu\text{g/L} x -0.085)$$

Rezultati se klasificiraju u 3 stupnja: \(-2.60 = \text{stupanj 1}; \ -2.6 - -1.39 = \text{stupanj 2}; >-1.39 = \text{stupanj 3}\) (7). Model for end-stage liver disease (MELD) je zbir koji pokazuje težinu kronične jetrene bolesti i koristan je za prioritiziranje bolesnika za transplantaciju jetre. Trenutno se koristi kao standard za procjenu 3-6 mjesečnog preživljenja bolesnika sa zatajenjem jetre. Što je veći dobiveni zbir, prognoza bolesti je gora. Za njegovo se računanje koriste serološki parametri: ukupni bilirubin, INR i kreatinin (8).

$$\text{MELD} = 3.78 x \text{Ln(bilirubin } \mu\text{mol/L}) + 11.2 x \text{Ln(INR}) + 9.57 x \text{Ln(kreatinin } \mu\text{g/dL}) + 6.4$$

Child-Pugh se zbir računa iz 5 varijabli: bilirubin, albumin, protrombinsko vrijeme (PV) ili INR, prisutnost ascitesa, stupanj encefalopatije (Tablica 2.). Koristan je za prognozu kronične jetrene bolesti, poglavito ciroze, i za planiranje tijeka daljnje liječenja bolesti (8).
<table>
<thead>
<tr>
<th>Parametar</th>
<th>1 bod</th>
<th>2 boda</th>
<th>3 boda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukupni bilirubin, (\mu \text{mol/L})</td>
<td><34</td>
<td>34-50</td>
<td>>50</td>
</tr>
<tr>
<td>Serumski albumin, g/L</td>
<td>>35</td>
<td>28-35</td>
<td><28</td>
</tr>
<tr>
<td>PV ili</td>
<td><4.0</td>
<td>4.0-6.0</td>
<td>>6.0</td>
</tr>
<tr>
<td>INR</td>
<td><1.7</td>
<td>1.7-2.3</td>
<td>>2.3</td>
</tr>
<tr>
<td>Ascites</td>
<td>Nema</td>
<td>Mali</td>
<td>Srednji do veliki (refraktorni)</td>
</tr>
<tr>
<td>Jetrena encefalopatija</td>
<td>Nema</td>
<td>Stupanj I-II</td>
<td>Stupanj III-IV</td>
</tr>
</tbody>
</table>

Tablica 2. Postupak računanja Child-Pugh zbira.

1.7. Ultrazvuk

Ultrazvuk (UZV) obuhvaća spektar frekvencija od 2 do 15 Mhz, što spada daleko izvan čujnog spektra ljudskog uha. Ultrazučni snop stvaraju piezoelektrični kristali u sonidi UZV uređaja koji se onda odašilju u bolesnikovo tijelo. Pri prolasku kroz tkiva dio UZV snopa se reflektira prema sondi, a dio raspršuje i oslabljuje (atenuira). Refleksije se vraćaju prema sondi, računalno obrađuju i prikazuju na ekranu u tonovima sive skale. Taj se prikaz naziva B-prikazom (brightness-mode). UZV-om s B-prikazom se vrlo dobro razlikuju ciste i kolekcije tekućine od žarišnih solidnih lezija u raznim parenhimnim organima. UZV snop ne prolazi kroz strukture ispunjene zrakom i kosti i zbog toga se plućni parenhim i kosti ne mogu prikazivati UZV-om. Da bi se željena slika prikazala na ekranu, ispitivač mora rukom usmjeravati sondu u željenom smjeru i ravnini i koristiti određenu frekvenciju. Za prikaz površinskih struktura koriste se sonde visokih frekvencija (7.5-15 Mhz), a za prikaz dubljih struktura sonde niskih frekvencija (2-5 MHZ). Visoka frekvencija pruža višu razlučivost (rezoluciju), ali je njezin nedostatak mala prodornost u dubinu tkiva i onemogućuje prikaz dublje smještenih organa. Sonde niske frekvencije dobro prikazuju dublje smještene strukture, ali manjom razlučivošću. Postoje i specijalizirane sonde koje se uvode u tjelesne šupljine (endorektalne, endovaginalne, transezojaforealne, endoskopske, intravaskularne) koje
omogućuju detaljnije pregledne od standardnih UZV sondi. Posljednjih 20 godina u upotrebi su i doplerski uređaji koji se temelje na Dopplerovom zakonu. Dopplerov zakon temelji se na činjenici da se, pri gibanju tijela koje reflektira zvuk (reflektor), frekvencija odaslanog snopa razlikuje od frekvencije reflektiranog snopa. To se načelo koristi u doplerskim UZV uređajima za prikaz protoka u krvnim žilama, pri tome koristeći eritrocite kao reflektore UZV snopa. Obojenim doplerom (kolor Doppler) i power-doplerom moguće je prikazati protok u krvnim žilama u tonovima raznih boja. Današnjim, modernijim uređajima je moguće prikazivanje protoka čak i u malim visceralnim krvnim žilama i određivanje brzine u sistoli i dijastoli u pojedinim žilama. Koriste se i ultrazvučna kontrastna sredstva koja se injiciraju u perifernu venu. Ta sredstva sadrže mjehuriće plina koji djeluju kao raspršivači UZV valova i povećavaju razliku signala između krvnih žila i okolnog tkiva što omogućava dobar prikaz strukture u kojoj se nalazi kontrastno sredstvo. Kontrastna sredstva korisna su za analizu prokrvljenosti pojedinih žarišnih lezija u jetri. Velika prednost ultrazvuka je u nepostojanju ioniziranog zračenja ili bilo kakvih štetnih djelovanja na pacijenta. To je tehnika koja daje prikaz u stvarnom vremenu (real-time) koja omogućuje i procjenu kretnosti pojedinih struktura u tijelu. UZV aparati su razmjerno jeftini, dostupni i prisutni u većini ordinacija i bolnica. Negativna strana UZV-a je u tome što ispitivač mora biti iskusan u manipuliranju i pozicioniranju sonde i očitavanju dobivenog nalaza. UZV je trenutno, uz CT, glavna slikovna metoda u dijagnostici bolesti jetre i upotrebljava se kao prva slikovna metoda u većini indikacija. Kod ciroze jetre UZV-om u B-modu uočavaju se promjene u jetrenom tkivu, a obojenim se doplerom procjenjuje smjer protoka u portalnoj veni i moguće je uočiti portosistema kolateralne. UZV nalaz u cirozi jetre opisuje difuznu hiperehogenost, inhomogenost tkiva, nepravilnost kontura, hipertrofičnost I. segmenta, a lako je uočiti i ascites. Doplerom se može dijagnosticirati tromboza portalne vene, procijeniti hemodinamiku u portalnoj veni, hepatalnoj arteriji i hepatalnim venama. Velika važnost UZV-a leži u dijagnostici žarišnih lezija jetre. Vrlo se dobro razlikuju jednostavne ciste od solidnih žarišnih tvorbi. Kalcifikacije u tkivu se lako raspoznaju kao ehogene zone s distalnim akustičkim muklinama. Apscesi jetre prepoznaju se kao tekuće kolekcije s gustim odjecima. UZV se koristi i u prikazu primarnih i sekundarnih tumoru i procjeni njihove operabilnosti. Obavljaju se i biopsije jetre pod nadzorom UZV-a, kao i mnogi terapijski zahvati vodeni UZV-om, kao što su drenaže apsesa, sklerozacije tumora, radiofrekventne ablacije tumora itd. UZV je značajan i u prijeoperacijskoj pripremi i praćenju bolesnika nakon transplantacije jetre. Ultrazvuk je prva i jedna od najboljih metoda oslikavanja bolesti žučnog sustava. U prikazu žučnih kamenaca ima osjetljivost preko 95% i najčešće je taj nalaz dovoljan za sigurno
1.8. Shear wave elastografija

Elastografija je metoda procjene stupnja fibroze jetre koja počiva na temelju odašiljanja vanjske sile koja djeluje na tkivo i stvaranja posmičnih valova koji se potom mogu mjeriti. Brzina valova proporcionalna je elastičnosti tkiva, a samim time i količini fibroze u tkivu. Ultrazvučne se metode elastografije mogu podijeliti u dvije velike grupe: jednodimenzionalna tranzijentna elastografija (TE, FibroScan), i dvodimenzionalne (B-mode): Acoustic radiation force impulse imaging (ARFI) i dvodimenzionalna shear wave elastografija u stvarnom vremenu (prema engl. Real-time two-dimensional shear wave elastography, RT 2D SWE). Tranzijentna elastografija (TE, FibroScan) je prva ultrazvučna elastografija koja je dosada razvijena. Metoda koristi jednodimenzionalni UZV za određivanje tvrdoće jetre tako da mjeri brzinu niskofrekventnih posmičnih valova koji se šire kroz jetru (9). Međutim, nedostatak TE leži u činjenice da ne dopušta dvodimenzionalni (2D) prikaz struktura, neupotrebljiva je u pacijenata s ascitesom i pregled slezene je moguć jedino kada se prihvatljivo mjesto mjerenja odabere konvencionalnim ultrazvukom (10). ARFI metoda je elastografska metoda koja koristi dvodimenzionalni ultrazvučni prikaz. Pogodnost ove metode je što se modul može integrirati u konvencionalne abdominalne ultrazvučne sonde. ARFI metodom mjere se brzine posmičnih valova izazvanih akustičnim impulsom iz jednog izvora. Ova metoda je superiornija nad TE upravo u korištenju dvodimenzionalnog prikaza i njoj osjetljivosti detekcije fibroze jetre. Dvodimenzionalna shear wave elastografija u stvarnom vremenu (RT 2D SWE) je najnovija ultrazvučna elastografska metoda koja objedinjuje odašiljanje akustičnih impulsa (ARFI) i mjerenje brzine posmičnih valova u stvarnom vremenu (11). Metoda se temelji na odašiljanju ultrazvučnih valova u tkivo iz konvencionalne sonde fokusirajući ih u 5 različitim impulsima. Ti valovi izazivaju deformaciju tkiva i stvaranje posmičnih (shear) valova koji su okomito usmjereni na osnovni ekscitirajuće valove. Podatci o tvrdoći tkiva proizlaze upravo iz mjerenja brzine tih posmičnih valova. Brzina valova je proporcionalna s tvrdoćom tkiva, a ona je također proporcionalna sa stupnjem fibroze. Fokusirajući valove u 5 različitim impulsa RT 2D SWE ima veliku prednost u točnosti i preciznosti mjerenja nad ARFI metodom koja koristi samo jedan ekscitirajući val. Zbog toga ovom metodom možemo dobiti kvalitetniju sliku puno većeg prostora. Rezultati mjerenja elastografije mogu se izraziti apsolutnim i prosječnim vrijednostima. Apsolutnim se
vrijednostima izražavaju različite vrijednosti tvrdoće tkiva unutar analiziranog područja, dok konačni se rezultat izražava kao prosječna tvrdoća analiziranog područja (11,12).
2. CILJ ISTRAŽIVANJA
Procijeniti pouzdanost dvodimenzionalne shear wave elastografije u stvarnom vremenu (RT 2D SWE) kod bolesnika s cirozom jetre, u usporedbi s laboratorijskim nalazima.
3. MATERIJAL I METODE
3.1. Ispitanici

U ovom retrospektivnom istraživanju obuhvaćeni su bolesnici stariji od 18 godina, kojima je, na Zavodu za gastroenterologiju KBC-a „Firule“, rađena dvodimenzionalna ultrazvučna elastografija u stvarnom vremenu (RT 2D SWE) tijekom ultrazučnog pregleda abdomena zbog kronične bolesti jetre, od siječnja 2018.g. do svibnja 2018.g. U studiju su uključeni bolesnici s verificiranom cirozom jetre na temelju laboratorijskih, ultrazučnih i/ili endoskopskih kliničkih nalaza.

Klinički kriteriji za postavljanje dijagnoze ciroze jetre bili su:

1. Pozitivna anamneza kronične jetrene bolesti i moguća ranija dekompenzacija (ascites, ikterus, encefalopatija, krvarenje iz varikoziteta jednjaka)
2. Laboratorijski pokazatelji: trombociti, produženo PV, razina albumina, albuminski-globulinska inverzija
3. Ultrazučni nalaz: nodularni izgled površine jetre, ledirani izgled jetrenog parenhima, veličina jetre i slezene, prisutnost i količina ascitesa.

3.2. Mjerenje shear wave elastografije

Elastografski pregled jetre rađen je na uređaju Aplio 500 ultrasound system (Toshiba Medical Systems Corporation, Tochigi, Japan). Pregled je uvijek rađen po standardiziranom protokolu za UZV pregledi koji se primjenjuje na Zavodu za gastroenterologiju KBC-a „Firule“, u pacijenata natašte, u ležećem položaju. Elastografski pregled rađen je kroz međurebrene prostore desne strane abdomena s abduciranom desnom rukom i u ekspiriju. Kada bi se dobio zadovoljavajući prikaz jetrenog parenhima od pacijenta je zatraženo da zadrži dah tijekom 5 sekundi, tijekom kojeg bi se uključio elastometrijski mod. Dobivanjem stabilnog elastograma, slika bi se zamrznula i provelo bi se mjerenje tvrdoće jetre postavljanjem Q-box-a (mjerni pribor koji pokazuje mjereno područje) u zonu homogenog elastograma. Dobivena vrijednost, izražena u kPa, predstavlja tvrdoću tog segmenta jetre. Svakom bolesniku rađeno je 10 mjerenja iz kojih je izračunata prosječna vrijednost koja je korištena za daljnju analizu (Slika 1.).
Slika 1. Primjer elastograma jetre. Slika je preuzeta iz internetskog članka (13).

Iz dostupne medicinske dokumentacije i bolničkog informatičkog sustava nađeni su podatci o dobi i spolu, podatci o etiologiji ciroze, prisutnosti ascitesa, prisutnosti varikoziteta jednjaka, te nalazi biokemijskih parametara funkcije jetre potrebni za određivanje ALBI, MELD i Child-Pugh zbirova.

3.3. Statistička obrada podataka

Normalnost raspodjele provjeravana je Kolmogorov-Smirnov testom. Svi su podaci s pravilnom raspodjelom prikazani kao aritmetička sredina ± standardna devijacija (X±SD). Za testiranje razlika između skupina korišten je chi-kvadrat (χ^2) test. Za određivanje povezanosti među varijablama s nepravilnom raspodjelom korišten je Spearmanov koeficijent korelacije. Vrijednost $p < 0,05$ smatrana je statistički značajnom. Za statističku obradu podataka korišten je računalni program SPSS za Windows, verzija 23.0.
4. REZULTATI
Istraživanje je uključilo 30 bolesnika u prosječnoj dobi od 57 godina, s rasponom od 20 do 81 godine, od toga je 24 (80%) muškarca i 6 (20%) žena. Najzastupljenije su alkoholna (63,3%) i autoimuna (20%) etiologija bolesti jetre, a od ostalih prisutne su virusna etiologija (13,3%) i srčana dekompenzacija (3,3%) (Grafikon 1.).

Grafikon 1. Broj bolesnika po etiologiji ciroze jetre.

Među ispitanim bolesnicima, ascites je bio prisutan u 12 (40%) bolesnika, varikoziteti jednjaka bili su prisutni kod 9 (30%) bolesnika, a encefalopatija je bila prisutna kod 2 (6,7%) bolesnika. Bolesnici su svrstani u skupine po ALBI i Child-Pugh zbirovima, koristeći podatke dobivene iz biokemijskih i ultrazvučnih nalaza, računajući po standardiziranim formulama. Prikaz svih podataka dobivenih statističkom analizom prikazuje Tablica 3. Prema ALBI zbiru, u stupnju 1 bila su 2 (6,7%) bolesnika, u stupnju 2 i 3 bilo je po 13 (43,3%) bolesnika. Za 2 (6,7%) nije bilo moguće odrediti ALBI zbir zbog nedostatka podataka (Grafikon 2.). Prema Child-Pugh zbiru, u skupini A bilo je 7 (23,3%) bolesnika, u skupini B 19 (63,3%), a u skupini C 1 (3,3%) bolesnik. Za 3 (10%) bolesnika nije bilo moguće odrediti Child-Pugh zbir zbog nedostatka podataka (Grafikon 3.). Također svim je bolesnicima zasebno izračunat MELD zbir prema standardiziranoj formuli. (Grafikon 4.).
<table>
<thead>
<tr>
<th></th>
<th>Broj bolesnika</th>
<th>Medijan</th>
<th>Standardna devijacija</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dob</td>
<td>30</td>
<td>57,60</td>
<td>12,990</td>
</tr>
<tr>
<td>Bilirubin (µmol/L)</td>
<td>29</td>
<td>55,190</td>
<td>63,9115</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>30</td>
<td>101,57</td>
<td>215,008</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>30</td>
<td>90,30</td>
<td>227,0877</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>30</td>
<td>190,07</td>
<td>259,665</td>
</tr>
<tr>
<td>AF (U/L)</td>
<td>28</td>
<td>127,04</td>
<td>84,127</td>
</tr>
<tr>
<td>Kreatinin (µmol/L)</td>
<td>30</td>
<td>78,80</td>
<td>44,689</td>
</tr>
<tr>
<td>Natrij (mmol/L)</td>
<td>30</td>
<td>136,27</td>
<td>3,095</td>
</tr>
<tr>
<td>Albumini (g/L)</td>
<td>27</td>
<td>31,433</td>
<td>7,9179</td>
</tr>
<tr>
<td>Globulini (g/L)</td>
<td>26</td>
<td>33,15</td>
<td>8,835</td>
</tr>
<tr>
<td>PV</td>
<td>30</td>
<td>0,6907</td>
<td>0,21338</td>
</tr>
<tr>
<td>INR</td>
<td>30</td>
<td>1,2523</td>
<td>0,20753</td>
</tr>
<tr>
<td>Leukociti</td>
<td>30</td>
<td>5,827</td>
<td>2,9790</td>
</tr>
<tr>
<td>Eritrociti</td>
<td>30</td>
<td>3,8727</td>
<td>0,70072</td>
</tr>
<tr>
<td>Trombociti</td>
<td>30</td>
<td>120,77</td>
<td>69,744</td>
</tr>
<tr>
<td>SWE (kPa)</td>
<td>30</td>
<td>11,6130</td>
<td>3,77716</td>
</tr>
<tr>
<td>SD (kPa)</td>
<td>20</td>
<td>1,9505</td>
<td>0,69569</td>
</tr>
</tbody>
</table>

Tablica 3. Statistički prikaz korištenih podataka.
Grafikon 2. Bolesnici svrstani u skupine ALBI zbira. N/A= nemoguće je odrediti zbog manjka podataka.

Svim uključenim bolesnicima uspješno je izmjerena tvrdoća jetre. Srednja vrijednost svih mjerenih tvrdoća je 11,6 kPa sa srednjom vrijednošću standardne devijacije od 1,9 kPa. Raspon izmjerenih tvrdoća jetre kreće se od 3,29 kPa do 25 kPa. Vrijednosti izmjerene tvrdoće jetre za svakog bolesnika su klasificirane prema METAVIR podjeli u 5 stupnjeva, od F0 do F4 (Grafikon 5.). Za referentne intervale korištene su sljedeće vrijednosti (u kPa): F0-F1: <7.0; F2: 7.0 – 8.8; F3: 8.8 – 11.5; F4: >18.1 (14).

Grafikon 5. Prikaz broja bolesnika u skupinama prema METAVIR podjeli.

Analizom podataka nije utvrđen statistički značajni odnos METAVIR skupina s ALBI zbirom (rho=0,136, p=0,491; T=7,801, p=0,253). Također nije utvrđen značajni odnos METAVIR skupina s MELD zbirom (rho=0,219, p=0,253; T=40,656, p=0,530). Nije utvrđen ni značajni odnos METAVIR skupina s Child-Pugh zbirom (rho=0,150, p=0,455; T=7,237,
Utvrđen je samo statistički značajan odnos METAVIR skupina sa razinom trombocita u smislu negativne korelacije METAVIR skupina i broja trombocita (ρ=-0.570, p=0.001; T=-0.593, p=0.001).
Rezultati ovog istraživanja pokazuju da se tvrdoće jetre, izmjerene dvodimenzionalnom ultrazvučnom elastografijom u stvarnom vremenu (RT 2D SWE), klasificirane u odgovarajuće METAVIR skupine, ne mogu usporediti i korelirati s ALBI, MELD i Child-Pugh zbroivima za procjenu jetrenog oštećenja izračunatima iz standardnih biokemijskih pretraga. To ukazuje na mogućnost da je elastografija korisna metoda za procjenu stupnja jetrenog oštećenja, određivanje prognoze preživljenja i definiranje daljnjih opcija liječenja ciroze jetre, za razliku od standardnih biokemijskih parametara, korištenih za izračunavanje ALBI, MELD i Child-Pugh zbroiva, koji ne pokazuju zadovoljavajuću razinu preciznosti u svim stadijima bolesti. Otkriveno je da je razina trombocita u krvi dobar pokazatelj jetrenog oštećenja kod bolesnika s cirozom jetre. Otkrivena negativna korelacija broja trombocita s METAVIR skupinama pokazuje da se razina trombocita u krvi može koristiti kao parametar za stupnjevanje i klasifikaciju oštećenja jetre.

Ciroza jetre je kronična bolest koja je u laganom porastu diljem svijeta. Zbog velikog razlikovanja kliničkih slika među stadijima u kojima se bolest otkriva i razvija važno je imati široki izbor pouzdanih dijagnostičkih testova za otkrivanje, praćenje i klasificiranje bolesti. Standardni laboratorijski nalazi, kao osnova dijagnostičkih testova ciroze jetre, nisu jednako pouzdani u svim stadijima bolesti. Na primjer,jetreni enzimi, pokazatelji jetrenog oštećenja, u konačnim stadijima bolesti padaju na niske vrijednosti iako je oštećenje jetre vrlo veliko (6). Dodatni problem predstavlja činjenica da su analizirani bolesnici bili u kompenziranom i dekompenziranom stanju. Laboratorijski nalazi u kompenziranom stanju ne moraju pokazati nikakva odstupanja od normalnoga. To stvara veliku razliku u laboratorijskim nalazima između kompenziranih i dekompenziranih bolesnika unutar istog stadija bolesti i dovodi do inkonzistencije rezultata. Biopsija jetre već dugi niz godina predstavlja zlatni standard procjene stupnja oštećenja jetre, ali također ima i svojih mana u smislu cijene, opasnih komplikacija i neugodnosti za bolesnike. Zbog svega navedenoga, nameće se velika potreba za neinvazivnom, sigurnijom i jeftinijom metodom. Dvodimenzionalna ultrazvučna elastografija u stvarnom vremenu metoda je koja se tek nedavno pojavila kao pouzdana metoda procjene stupnja oštećenja jetrenog parenhima i u kratko vrijeme dokazala svoju korisnost u vidu postavljanja dijagnoze, praćenja i stupnjevanja bolesti, što dokazuju i objavljene relevantne studije (12-15). Budući da se ova metoda pojavila tek nedavno, postoji jako malo studija koje uspoređuju laboratorijske biokemijske parametre i elastografski nalaz. Istraživanjima sličnim ovom dokazano je da postoji korelacija MELD i ALBI zbroiva sa elastografskim nalazom. Spomenuta studija istraživala je vrijednost RT 2D SWE u bolesnika...
s kompenziranom cirozom jetre, za razliku od ovog istraživanja gdje je analizirana valjanost elastografije kod kompenziranih i dekompenziranih bolesnika (15). Objavljene su i studije u kojima su uspoređivali nalaz elastografije sa nalazom biopsije jetre. Tim studijama je dokazana pouzdanost elastografije u histološkoj procjeni fibroze tkiva jetre (14).

Treba se osvrnuti i na nedostatke i ograničenja ovog istraživanja. Prvenstveno, istraživanje je napravljeno na jako malom broju bolesnika i uključivalo je bolesnike s različitim etiologijama ciroze. Također, dijagnoza ciroze nije bila postavljana na temelju biopsije jetre nego prvenstveno na laboratorijskim, ultrazvučnim i endoskopskim nalazima karakterističnima za cirozu jetre. Nadalje, bolesnici su bili i u kompenziranom i dekompenziranom stanju, što bi se trebalo također izbjeći u daljnjim studijama. Za daljne valjane rezultate trebalo bi provesti studiju na daleko većem broju bolesnika sa strože kontroliranim uključnim i isključnim parametrima.

Zaključno, RT 2D SWE je dokazano korisna metoda za otkrivanje bolesnika s cirozom jetre, njihovo praćenje i stupnjevanje težine bolesti. Koristeći ovu metodu uz standardne laboratorijske pretrage, moguće je precizno i neinvazivno dijagnosticirati i pratiti bolesnike s cirozom jetre. Međutim, potrebna su daljnja istraživanja na većem broju bolesnika, po mogućnosti s istom etiologijom bolesti, radi određivanja prognoštičke valjanosti elastografskih rezultata i njihove korelacije s parametrima laboratorijskih nalaza.
6. ZAKLJUČCI
1. Provedeno istraživanje pokazalo je da je tvrdoća jetre izmjerena metodom RT 2D SWE precizna metoda za otkrivanje, praćenje i stupnjevanje oštećenja jetre, primjenjiva na sve stadije ciroze jetre.

2. Otkriveno je da biokemijski parametri laboratorijskih nalaza korišteni za procjenu i stupnjevanje oštećenja jetre nisu dovoljno pouzdani u svim stadijima ciroze jetre te u velikoj mjeri ovise o kompenziranosti bolesnika.

3. Otkriveno je da su trombociti u krvi koristan parametar za procjenu i klasifikaciju oštećenja jetrenog parenhima u cirozi jetre.
8. SAŽETAK
Cilj istraživanja: Procijeniti pouzdanost dvodimenzionalne shear wave elastografije u stvarnom vremenu (RT 2D SWE) kod bolesnika s cirozom jetre u usporedbi s laboratorijskim nalazima.

Ispitanici i metode: Provedeno je retrospektivno istraživanje u kojem je uključeno 30 bolesnika, 24 muškarca i 6 žena, koji su zbog dijagnoze ciroze jetre upućeni na mjerenje dvodimenzionalne shear wave elastografije u stvarnom vremenu na Zavod za gastroenterologiju, Klinike za unutarnje bolesti Kliničkog bolničkog centra Split, Firule. Tvrdoće jetre mjerene su metodom RT 2D SWE koristeći uređaj Aplio 500 ultrasound system (Toshiba Medical Systems Corporation, Tochigi, Japan), bolesnicima s dokazanom cirozom jetre različite etiologije u kompenziranom i dekompenziranom stanju. Prikupljeni su laboratorijski nalazi svih bolesnika. Nalazi elastografije su kategorizirani u METAVIR skupine po težini oštećenja jetre. Mjerenja su potom uspoređena s kliničkim ALBI, MELD i Child-Pugh zbirovima za procjenu uznapredovalosti jetrene bolesti.

Rezultati: Nije utvrđen statistički značajan odnos METAVIR skupina s ALBI zbirom (rho=0,136, p=0,491; T=7,801, p=0,253). Također nije utvrđen značajan odnos METAVIR skupina s MELD zbirom (rho=0,219, p=0,253; T=40,656, p=0,530). Nije utvrđen ni značajan odnos METAVIR skupina s Child-Pugh zbirom (rho=0,150, p=0,455; T=7,237, p=0,299). Utvrđena je negativna korelacija METAVIR skupina i broja trombocita (rho=-0,570, p=0,001; T=-0,593, p=0,001).

Zaključak: Na temelju rezultata ovog istraživanja može se zaključiti da je preporučljivo koristiti laboratorijske pretrage zajedno s ultrazvučnom elastografijom za preciznu procjenu uznapredovalosti jetrene bolesti te je svakako potrebno u daljnjim istraživanjima uključiti veći broj bolesnika i izbjeći nedostatke koje smo primijetili u našem istraživanju.
9. SUMMARY
Diploma thesis title: Real-time two-dimensional shear wave elastography reliability assessment in liver cirrhosis diagnostics.

Objectives: To assess the reliability of real-time two-dimensional shear wave elastography (RT 2D SWE) in patients with liver cirrhosis and compare it to standard laboratory tests.

Study design: Retrospective observational study.

Patients and methods: Total of 30 patients were retrospectively enrolled in this study, 24 males and 6 females. All of these patients were referred to University hospital of Split for RT 2D SWE measurement due to liver cirrhosis of different etiology. Liver stiffness was measured by RT 2D SWE method using Aplio 500 ultrasound system (Toshiba Medical Systems Corporation, Tochigi, Japan) on patients with confirmed liver cirrhosis of different etiologies in compensated and decompensated state. Laboratory tests results of all patients were also gathered. Elastography results were categorized by METAVIR staging for liver fibrosis. Said results were compared to ALBI, MELD and Child-Pugh scores for liver cirrhosis staging.

Results: There was no correlation between METAVIR stages and ALBI score stages (rho=0.136, p=0.491; T=7.801, p=0.253). No correlation was found between METAVIR stages and MELD score (rho=0.219, p=0.253; T=40.656, p=0.530). No correlation was found between METAVIR stages and Child-Pugh score stages (rho=0.150, p=0.455; T=7.237, p=0.299). Negative correlation was found between METAVIR score stages and blood platelet count (rho=0.570, p=0.001; T=-0.593, p=0.001).

Conclusion: Based on the results of this study, it can be concluded that it is advisable to use standard laboratory tests along with RT 2D SWE for diagnostics and precise assessment of liver chirrosis stage. Further clinical studies with greater number of patients included should be conducted to assess the reliability of this method and to avoid shortcomings noted in our study.
10. ŽIVOTOPIE
OSOBNI PODATCI

Ime i prezime: Filip Šego

Datum i mjesto rođenja: 12. travnja 1993. godine, Dubrovnik, Hrvatska

Državljanstvo: Hrvatsko

Adresa stanovanja: Gradina 12, 20270 Vela Luka

Telefon: +385918947222

Elektronička pošta: filip.sego.1@gmail.com

OBRAZOVANJE

2000. – 2008., Osnovna škola Vela Luka, Vela Luka

2008. – 2012., Opća gimnazija Vela Luka, Vela Luka

2012. – 2018., Medicinski fakultet Sveučilišta u Splitu, smjer doktor medicine

ZNANJA I VJEŠTINE

Izvrsno poznavanje engleskog jezika u govoru i pismu.

Osnovno poznavanje njemačkog jezika u govoru i pismu.

Poznavanje rada u MS Office sustavu.

Napredno korištenje pretraživanja interneta.

Stečene izvrsne komunikacijske vještine i vještine u timskom radu pri povremenom radu kao prodavač u trgovini STEU Piccolo i pri radu u Lučkoj upravi Vela Luka u ljeto 2013. godine.

Posjedovanje vozačke dozvole A1, A2, A i B kategorije za motorna vozila i B kategorije za plovila.
